
Large-Scale Sparse Bayesian Linear Regression

Ralf Herbrich

May 2, 2014

Abstract

In this short note, we derive an update algorithm for the sparse Bayesian linear regression us-
ing factor graph inference. We will also show how this algorithm computes the best factorising
approximation using Expectation Propagation and MapReduce. This algorithm is particu-
larly effective for highly sparse and high-dimensional linear models because the runtime and
memory complexity is O (ND) and O (K) instead of O

(
K3

)
and O

(
K2

)
, respectively, for the

standard non-sparse Bayesian Linear Regression inference algorithms, where N is the num-
ber of training examples, D is the average sparsity of each training examples and K is the
dimensionality of the parameter/weight vector. Since we are using a Bayesian framework, we
can reliably deal with K = O (N). Also, the proposed algorithm is very applicable when the
dataset is split over multiple files on a Map-Reduce system.

1 Introduction
Notation In this rest of the note, we use the following notation: Lower-case bold symbols denote
column vectors, e.g. x, while upper-case bold symbols denote matrices, e.g. A. The transpose of
a vector is denoted by T, for example, xT. We will use two notations for the Gaussian density:
N
(
x;µ, σ2

)
and G (x; τ, π) which are related to each other via

τ = µσ−2 and π = σ−2 , (1)
µ = τπ−1 and σ2 = π−1 . (2)

The (more standard) notation N is useful when studying the location and spread parameter of the
Gaussian density while the canonical parameterisation G is more useful for product and division
because

G (x; τ1, π1) · G (x; τ2, π2) ∝ G (x; τ1 + τ2, π1 + π2) . (3)

2 Problem Setting
In the following, we will study the following setting: All our data is given as a (distributed)
set of examples {(xi, yi)}Ni=1 where (xi, yi) ∈ RK × R. We will also assume that N > 109 and
K > 106 and the entire dataset is stored on a distributed set of files. Moreover, we shall also
assume that any linear model we learn cannot be stored in a single RAM or file and will be
partitioned over distributed storage systems (e.g., files). Finally, we make the crucial assumption
that ‖xi‖0 < D � K, that is, all feature vectors xi have almost all components set to zero (in
practise, we can assume that D ≈ 102).

Our data model is that of a linear model with zero-mean Gaussian noise of input-dependent
variance, that is,

p (y|x,w) = N
(
y;xTw, β2

x

)
.

Note that the sparsity assumption means that the inner product xTw can be carried out with
D lookup and product/sum operations. We shall denote by Vi the set of non-zero indices of xi

1



and note that |Vi| ≤ D. Finally, we assume that we will constantly maintain a fully factorising
Gaussian belief distribution p (w), that is,

p (w) =

K∏
j=1

N
(
wj ;µj , σ

2
j

)
.

2.1 Predictive Distribution
Given these assumptions, it is easy to work out the predictive distribution at a new example x
which is simply given by

p (y|x) =

ˆ
p (y|x,w) · p (w) dw

=

ˆ
N
(
y;xTw, β2

x

)
·

K∏
j=1

N
(
wj ;µj , σ

2
j

)
dw

= N

y;xTµ,
∑
j

x2jσ
2
j + β2

x

 .

Note again that due to the assumed sparsity assumption, the inner products are reduced to D
lookups for the non-zero dimensions of x!

2.2 Single Point Inference
In order to derive the single-point inference algorithm, we will be using a factor graph representa-
tion that experesses the computation in terms of operations over messages from all factors in the
graph corresponding to

p (y, s,w|x) = p (y|s)︸ ︷︷ ︸
h(s)

· p (s|x,w)︸ ︷︷ ︸
g(s,w1,...,wK)

· p (w)︸ ︷︷ ︸∏K
j=1 fj(wj)

,

where the three factors are defined by

• Factor fj : Gaussian prior N
(
wj ;µj , σ

2
j

)
• Factor g: Inner product between x and w, that is, δ

(
s = xTw

)
• Factor h: The data likelihood N

(
y; s, β2

x

)
Looking at the factor graph, we see that the posterior over the weights can be written as follows:

p (wj |x, y) = mg→wj
(wj) ·mfj→wj

(wj)

= mg→wj
(wj) · N

(
wj ;µj , σ

2
j

)
= N

(
wj ; µ̃j , σ̃

2
j

)
.

In order to compute mg→wj we note that ms→g (s) = mh→s (s) = N
(
s; y, β2

x

)
and mwj→g (wj) =

mfj→wj
(wj) = N

(
wj ;µj , σ

2
j

)
. Using the message update equation for the summation factor from

the TrueSkill paper, we get

mg→wj (wj) = N

(
wj ;−

1

xj

(
K∑

k=1

xkµk − xjµj − y

)
,
1

x2j

(
K∑

k=1

x2kσ
2
k − x2jσ2

j + β2
x

))
.

Note again that due to the sparsity, the inner products reduce to D lookups for the non-zero
dimensions of x. Also, in practise we can transform the Gaussian into the G parameterisation
using (1) in two-divisions and then carry out the product above using (3).

2



Also note that we can express the mean and variance update equations in a closed-form by
carrying out these steps in terms of x, y and the prior paramters µ and σ2. More formally, we
have

σ̃2
j =

(
πg→wj

+ πfj→wj

)−1
=

(
x2j∑K

k=1 x
2
kσ

2
k − x2jσ2

j + β2
x

+
1

σ2
j

)−1

=

x2jσ2
j +

∑K
k=1 x

2
kσ

2
k − x2jσ2

j + β2
x

σ2
j

[∑K
k=1 x

2
kσ

2
k − x2jσ2

j + β2
x

]
−1

= σ2
j ·

(∑K
k=1 x

2
kσ

2
k − x2jσ2

j + β2
x∑K

k=1 x
2
kσ

2
k + β2

x

)
.

σ̃2
j = σ2

j ·

(
1−

x2jσ
2
j∑K

k=1 x
2
kσ

2
k + β2

x

)
(4)

and, for the mean µ̃j

µ̃j =
τg→wj

+ τfj→wj

πg→wj + πfj→wj

=

(
−xj ·

xTµ− xjµj − y∑K
k=1 x

2
kσ

2
k − x2jσ2

j + β2
x

+
µj

σ2
j

)
·
σ2
j

(∑K
k=1 x

2
kσ

2
k − x2jσ2

j + β2
x

)
∑K

k=1 x
2
kσ

2
k + β2

x

=
−xjσ2

j ·
[
xTµ− xjµj − y

]
+ µj ·

[∑K
k=1 x

2
kσ

2
k − x2jσ2

j + β2
x

]
∑K

k=1 x
2
kσ

2
k + β2

x

=
µj ·

[∑K
k=1 x

2
kσ

2
k + β2

x

]
− xjσ2

j ·
[
xTµ− y

]
∑K

k=1 x
2
kσ

2
k + β2

x

.

µ̃j = µj +
xjσ

2
j∑K

k=1 x
2
kσ

2
k + β2

x

·
(
y − xTµ

)
(5)

2.3 Expectation Propagation
The above algorithm in terms of update equations (5) and (4) provides the best factorizing approx-
imation to the posterior p (w|x, y) on a single example but does not give the optimal approximation
to a set of observations {(xi, yi)}Ni=1. In order to get a good approximation for this case, we make
the following approximation:

p (w| {xi, yi}) ≈ q (w) =

N∏
i=1

∏
j∈Vi

N
(
wj ;µij , σ

2
ij

)
︸ ︷︷ ︸

≈p(yi|xi,w)

·
K∏
j=1

N
(
wj ;µj , σ

2
j

)
︸ ︷︷ ︸

p(w)

.

The approximating Gaussians N
(
wj ;µij , σ

2
ij

)
are called messages from factor p (yi|xi,w) to vari-

able wj . Note that due to the sparsity, we only have D ×N many messages rather than O
(
K2
)

many elements that we would need to represent the full covariance matrix of all weights spanned by
the N examples. The Expectation Propagation (EP) algorithm proceeded by continually updating
the approximation for p (yi|xi,w) as follows:

3



1. Initialize mij = G (wj ; 0, 0) for all N ×D messages.

2. Initialize the current marginals q (wj) = N
(
wj ;µj , σ

2
j

)
.

3. Do

(a) Set δ = 0.
(b) For all i in 1, . . . , N

i. For all j ∈ Vi compute p (wj) = q (wj) /mij (wj) using (1), (2), and (3).
ii. Compute the new qnew (wj) using (4) and (5) using the µj and σ2

j from step i.
iii. Update mij (wj)← qnew (wj) /p (wj) using (1), (2), and (3).
iv. Update δ ← max (δ,KL (qnew (wj) , q (wj))) for all j ∈ Vi.
v. Update the marginals by q ← qnew.

4. Until δ < ε

5. Return q

This algorithm computes the best possible factorising approximation of p (w) by incrementally
improving the approximation of each data likelihood term p (yi|xi,w). Since there are no other
approximations than the factorization of the posterior, the mean µ of the posterior is identical to
the mean of the non-sparse posterior(

Σ−10 + diag
(
β−2

)
XTX

)−1 (
Σ−10 µ0 + diag

(
β−2

)
XTy

)
.

Note that this posterior would require O
(
K3
)
computations and O

(
K2
)
storage which is much

larger than the above algorithm for sparse data!

2.4 Map-Reduce
The above algorithm is very efficient if all the parameters can be fit into a single machine’s
memory and all the data can be processed on a single CPU. However, for very large datasets, all
the training data will live on a set of distributed files. In order to deal with this situation, we now
devise a Map-Reduce approach to scale and parallelize the Expectation Propagation algorithm
in blocks of data. Formally, let’s assume that our observations are given in M blocks Tm where
Tm := {(xi, yi)}Nm

i=1. Then, the posterior can also be written as

p (w|T1, . . . , Tm) ≈ q (w) =

M∏
m=1

∏
(xi,yi)∈Tm

∏
j∈Vi

N
(
wj ;µij , σ

2
ij

)
︸ ︷︷ ︸

≈p(yi|xi,w)

·
K∏
j=1

N
(
wj ;µj , σ

2
j

)
︸ ︷︷ ︸

p(w)

=

M∏
m=1

∏
j∈∪i∈TmVi

N
(
wj ;µmj , σ

2
mj

)
︸ ︷︷ ︸

≈p(Tm|w)

·
K∏
j=1

N
(
wj ;µj , σ

2
j

)
︸ ︷︷ ︸

p(w)

.

Here, with slight abuse of notation, we use i ∈ Tm to denote the set of training set indicies
that are in the m-th block of data. Again, the approximating Gaussian N

(
wj ;µmj , σ

2
mj

)
are

called messages from factor p (Tm|w) to variable wj . Again, due to the sparsity of the individual
examples, we have at most D × Nm many messages rather than O

(
K2
)
that we would need for

the full covariance. The Map-Reduce algorithm can now be written as follows:

1. Initialize Initialize mlj = G (wj ; 0, 0) for all N ×D messages for l ∈ {1, . . . ,M}.

2. Initialize the current marginals q (wj) = N
(
wj ;µj , σ

2
j

)
.

4



3. Do

(a) Set δ = 0.

(b) Map-Phase on mapper l

i. For all j ∈ ∪i∈Tl
Vi compute p (wj) = q (wj) /mlj (wj) using (1), (2), and (3).

ii. Compute the new ql,tmp (wj) with the EP algorithm from Subsection 2.3 using the
training set Tl and p computed in step i.

iii. Update mlj (wj) ← ql,tmp (wj) /p (wj) using (1), (2), and (3) and forward to the
j-reducer.

(c) Reduce-Phase on index j

i. Compute qnew (wj) = N
(
wj ;µj , σ

2
j

)
·
∏M

l=1mlj (wj) using (1), (2), and (3).
ii. Update δ ← max (δ,KL (qnew (wj) , q (wj)))

iii. Update the marginal to q (wj)← qnew (wj).

4. Until δ < ε

5. Return q

While this algorithm uses the same factorization approximation than the single-machine EP al-
gorithm above, the parameter processing is slightly different due to the lack of a centralized,
consistent memory in the map-phase: Instead of constantly keeping a best possible marginal
approximation q, each mapper just computes the best possible approximation of p (Tl|w) as a
function of w but disregards the (local) posterior ql,tmp (which would have only been computed on
Nl many training examples). Instead, the only time that all approximations for p (Tl|w) are mul-
tiplied together with the original prior p (w) is in the reduce-phase. This de-coupling of memories
gives the MapReduce scheme the ability to scale to arbitrarily large training sets.

In contrast, the EP algorithm in Subsection 2.3 is constantly maintaining the best possible
approximation q (w) in memory - this is possible because most modern computers have a consistent
and fast memory model. However, the consistency of the memory makes the EP algorithm non-
scalable.

5


