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Rev Thomas Bayes - Probability Inversion



System Modelling with Differential Equations

I In systems of differential equations, the derivatives with respect to
spatial variables, x∈ D ⊂ Rd , and temporal variables, t ∈ [a, b] ⊂ R+,
are related to the implicitly defined states, u(x , t) ∈ RP , which are hence
often analytically intractable.

I The Initial Value Problem (IVP) models the system states with fixed initial
condition u∗(a), evolving according to the ODE as follows,{

ut (t) = f
(
t , u(t), θ

)
, t ∈ [a, b],

u(a) = u∗(a).

}
(1)

The existence of a solution is guaranteed under mild conditions
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System Modelling with Differential Equations

I The Mixed Boundary Value Problem (MBVP) may constrain different
states at different time points. Typically these constraints are imposed at
the ends of the time domain giving the general form for two state mixed
boundary value problems,

{ (
ut (t), vt (t)

)
= f

(
t ,
(
u(t), v(t)

)
, θ
)
, t ∈ [a, b],

g (v(a), u(b)) = 0, (2)

which can be straightforwardly generalised to higher dimensions and
extrapolated beyond the final time point b. Whereas a unique IVP
solution exists under relatively mild conditions, imposing mixed boundary
constraints can result in multiple solutions



System Modelling with Differential Equations

I PDEs are slightly more complex, as an illustrative example the parabolic
diffusion equation, modelling the heat diffusion over time along a single
spatial dimension by,


ut (x , t) = κuxx (x , t), t ∈ [0, 0.25], x ∈ [0, 1]
u(x , t) = sin (xπ) , t = 0, x ∈ [0, 1],
u(x , t) = 0, t ∈ [0, 0.25], x = 0, 1.

(3)



Quantifying Uncertainty in Differential Equation Models

I Consider data, y(t), observed at discrete time points t = [t1, t2, . . . , tT ]
and a set of model parameters θ.

I Using the exact solution of a mathematical model represented by
u∗(t, θ), a simplified observation model based on some measurement
error structure ε(t) is,

y(t) = u∗(t, θ) + ε(t). (4)

I Following Kennedy and O’Hagan by defining δ(t) as a random function
drawn from a Gaussian Process (GP), the observational model
becomes,

y(t) = u∗(t, θ) + δ(t) + ε(t). (5)

I Due to the lack of an analytical solution for most nonlinear differential
equations, the likelihood p

(
y(t) | u∗(t, θ), θ

)
cannot be obtained in

closed form.
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Quantifying Uncertainty in Differential Equation Models

I This issue is dealt with throughout the statistics literature by replacing
the exact likelihood with a surrogate, p

(
y(t) | ûN(t, θ), θ

)
, based on an

N-dimensional approximate solution, ûN(t, θ), obtained using numerical
integration methods

I The seemingly innocuous assumption of negligible numerical integration
error can subsequently lead to serious statistical bias and misleading
inferences for certain classes of differential equation models

I We may represent this additional uncertainty using the term
ζ(t, θ) = u∗(t, θ)− ûN(t, θ), such that,

y(t) = ûN(t, θ) + ζ(t, θ) + δ(t) + ε(t). (6)

I We “open the black box” by explicitly modelling the solution and
associated discretisation uncertainty, ûN(t, θ) + ζ(t, θ). This allows the
Kennedy and O’Hagan framework to be further enriched by incorporating
detailed knowledge of the mathematical model being employed
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integration methods

I The seemingly innocuous assumption of negligible numerical integration
error can subsequently lead to serious statistical bias and misleading
inferences for certain classes of differential equation models

I We may represent this additional uncertainty using the term
ζ(t, θ) = u∗(t, θ)− ûN(t, θ), such that,
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Quantifying Uncertainty in Differential Equation Models

I We model uncertainty in a finite dimensional representation of the infinite
dimensional solution through a probability statement on a space of
suitably smooth functions.

I Restricting to Hilbert spaces for modelling our knowledge of u∗(t, θ), we
define a Gaussian prior measure on the function space. We then directly
model our knowledge about the solution via the stochastic process
u(t, θ), thus replacing (6) with y(t) = u(t, θ) + δ(t) + ε(t).

I Focus attention on the joint posterior measure over differential equation
model states, parameters, and associated auxiliary parameters, Ψ, of
our probabilistic model of uncertainty,

p
(
θ, u(t, θ),Ψ | y(t),N

)
∝ p

(
y(t) | u(t, θ), θ

)︸ ︷︷ ︸
Likelihood

× p
(
u(t, θ) | θ,Ψ,N

)︸ ︷︷ ︸
Model

× p
(
θ,Ψ

)︸ ︷︷ ︸
Prior

.
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Gaussian Prior Measure for States and Derivatives

I Denote by Rλ a deterministic, square integrable kernel function with
length-scale λ ∈ (0,∞)

I Its integrated version is Qλ(t1, t2) =
∫ t1

a Rλ(s, t2)ds.

I Model for the derivative has covariance operator
cov(ut (t1), ut (t2)) = α−1 ∫R Rλ(t1, s)Rλ(t2, s)ds := RR(t1, t2), where α is
a prior precision parameter.

I Covariance on the state is its integrated version,
cov(u(t1), u(t2)) = α−1 ∫R Qλ(t1, s)Qλ(t2, s)ds := QQ(t1, t2)

I The cross covariance terms are defined in a similar manner and denoted
as RQ(t1, t2) and QR(t1, t2) respectively. We assume a joint Gaussian
prior measure on the state and its derivative,[

ut

u

]
∼ GP

([
mt

m

]
,

[
RR(t1, t2) QR†(t1, t2)
QR(t1, t2) QQ(t1, t2)

])
. (7)
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Gaussian Prior Measure for States and Derivatives

I One modelling choice for incorporating the spatial component of the
PDE into the covariance is to adopt a product structure. The spatial
covariance structures are defined similarly to the temporal form in the
ODE example as,

cov(uxx (x1, t1), uxx (x2, t2)) = β−1 ∫
R

Rµ(x1, z)Rµ(x2, z)dz QQ(t1, t2)

:= RR(x1, x2)QQ(t1, t2),

cov(u(x1, t1), u(x2, t2)) = β−1 ∫
R

Sµ(x1, z)Sµ(x2, z)dz QQ(t1, t2)

:= SS(x1, x2)QQ(t1, t2),

where β is a spatial prior precision parameter.

The prior construction follows by defining a product structure for space
and time,

GP
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mxx
mt
m

]
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Probabilistic Solution as Latent Function Estimation

I Consider a discretisation grid of N time points s := [s1, . . . , sN ] on the
interval [a, b] such that a = s1 ≤ · · · ≤ sN = b.

I Begin by fixing the known initial value, u(s1) := u∗(a), and computing the
exact derivative f1 := f (s1, u(s1), θ) at s1, via the deterministic ODE.

I Update joint GP prior given the computed exact derivative f1, obtaining
the conditional predictive distribution for the state at the subsequent grid
location s2,

p(u(s2) | f1,Ψ) = N
(
u(s2) | m(s2),C(s2, s2)

)
, (8)

with,

m(s2) = QR(s2, s1)RR(s1, s1)−1f1,

C(s2, s2) = QQ(s2, s2)−QR(s2, s1)RR(s1, s1)−1QR(s2, s1).



Probabilistic Solution as Latent Function Estimation

I Consider a discretisation grid of N time points s := [s1, . . . , sN ] on the
interval [a, b] such that a = s1 ≤ · · · ≤ sN = b.

I Begin by fixing the known initial value, u(s1) := u∗(a), and computing the
exact derivative f1 := f (s1, u(s1), θ) at s1, via the deterministic ODE.

I Update joint GP prior given the computed exact derivative f1, obtaining
the conditional predictive distribution for the state at the subsequent grid
location s2,

p(u(s2) | f1,Ψ) = N
(
u(s2) | m(s2),C(s2, s2)

)
, (8)

with,

m(s2) = QR(s2, s1)RR(s1, s1)−1f1,

C(s2, s2) = QQ(s2, s2)−QR(s2, s1)RR(s1, s1)−1QR(s2, s1).



Probabilistic Solution as Latent Function Estimation

I Consider a discretisation grid of N time points s := [s1, . . . , sN ] on the
interval [a, b] such that a = s1 ≤ · · · ≤ sN = b.

I Begin by fixing the known initial value, u(s1) := u∗(a), and computing the
exact derivative f1 := f (s1, u(s1), θ) at s1, via the deterministic ODE.

I Update joint GP prior given the computed exact derivative f1, obtaining
the conditional predictive distribution for the state at the subsequent grid
location s2,

p(u(s2) | f1,Ψ) = N
(
u(s2) | m(s2),C(s2, s2)

)
, (8)

with,

m(s2) = QR(s2, s1)RR(s1, s1)−1f1,

C(s2, s2) = QQ(s2, s2)−QR(s2, s1)RR(s1, s1)−1QR(s2, s1).



Probabilistic Solution as Latent Function Estimation

I Consider a discretisation grid of N time points s := [s1, . . . , sN ] on the
interval [a, b] such that a = s1 ≤ · · · ≤ sN = b.

I Begin by fixing the known initial value, u(s1) := u∗(a), and computing the
exact derivative f1 := f (s1, u(s1), θ) at s1, via the deterministic ODE.

I Update joint GP prior given the computed exact derivative f1, obtaining
the conditional predictive distribution for the state at the subsequent grid
location s2,

p(u(s2) | f1,Ψ) = N
(
u(s2) | m(s2),C(s2, s2)

)
, (8)

with,

m(s2) = QR(s2, s1)RR(s1, s1)−1f1,

C(s2, s2) = QQ(s2, s2)−QR(s2, s1)RR(s1, s1)−1QR(s2, s1).



Probabilistic Solution as Latent Function Estimation

I Now sample a realisation, u(s2), of the predictive process, and again link
our prior to the deterministic ODE model by computing
f2 := f (s2, u(s2), θ).

I In contrast to the first time point s1, we can no longer guarantee that the
realisation at the second time point, u(s2), and its derivative, ut (s2),
exactly satisfy the ODE model, i.e. that ut (s2) = f2.

I Therefore, at time s2 we explicitly model the mismatch between the ODE
evaluation f2 and the process derivative, ut (s2), as,

p
(
ut (s2) | f2,Ψ

)
= N

(
ut (s2) | f2,Ct (s2, s2)

)
,

I where the magnitude of the mismatch may be described by the variance,
Ct (s2, s2), of the predictive posterior over the derivative given by,

Ct (s2, s2) = RR(s2, s2)− RR(s2, s1)RR(s1, s1)−1RR(s1, s2).
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Overall Sampling Scheme

Algorithm 1 Sample from the joint posterior distribution of u and f1:N for an ODE initial value problem given θ,Ψ, N

1: At time s1 := a, initialise the derivative f1 := f
(
s1, u(s1), θ

)
for initial state u(s1) := u∗(a), and define associated model-derivative

mismatch, Λ1×1 := 0;

2: for n = 1 : N − 1 do
3: Define the predictive state mean and variance,

m(sn+1) = QR(sn+1, s1:n)
(
RR(s1:n, s1:n) + Λn×n

)−1 f1:n,

C(sn+1, sn+1) = QQ(sn+1, sn+1) − QR(sn+1, s1:n)
(
RR(s1:n, s1:n) + Λn×n

)−1QR(sn+1, s1:n)> ;

4: Sample step-ahead realisation u(sn+1) from the predictive distribution of the state,

p
(
u(sn+1) | f1:n,Ψ

)
= N

(
u(sn+1) | m(sn+1), C(sn+1, sn+1)

)
;

5: Evaluate the ODE model fn+1 := f (sn+1, u(sn+1), θ) for realisation u(sn+1) at the subsequent grid point, sn+1, and augment
the vector f1:n+1 := [f1:n, fn+1 ];

6: Define the predictive derivative variance,

Ct (sn+1, sn+1) = RR(sn+1, sn+1) − RR(sn+1, s1:n)
(
RR(s1:n, s1:n) + Λn×n

)−1RR(s1:n, sn+1)>,

and augment the matrix Λ(n+1)×(n+1) := diag
{

Λn×n, Ct (sn+1, sn+1)
}

;

7: end for

8: Define,

m(·) = QR(·, s1:N )
(
RR(s1:N , s1:N ) + ΛN×N

)−1 f1:N ,

C(·, ·) = QQ(·, ·) − QR(·, s1:N )
(
RR(s1:N , s1:N ) + ΛN×N

)−1QR(·, s1:N )> ;

Return both u ∼ GP(m, C) and f1:N .



Consistency of Sampling Scheme

I The probabilistic IVP solution and its derivative at the n’th (1 ≤ n ≤ N)
iteration of Algorithm 1 are Gaussian with mean and covariance that can
be expressed recursively as,

mn(t1) = mn−1(t1) + (fn −mn−1
t (sn))

∫ t1

a

Cn−1
t (s, sn)

Λ
(n,n)
n×n + Cn−1

t (sn, sn)
ds,

mn
t (t1) = mn−1

t (t1) + (fn −mn−1
t (sn))

Cn−1
t (t1, sn)

Λ
(n,n)
n×n + Cn−1

t (sn, sn)
,

Cn(t1, t2) = Cn−1(t1, t2)−
∫ t1

a

∫ t2

a

Cn−1
t (z, sn) Cn−1

t (sn, s)

Λ
(n,n)
n×n + Cn−1

t (sn, sn)
dsdz,

Cn
t (t1, t2) = Cn−1

t (t1, t2)− Cn−1
t (t1, sn) Cn−1

t (sn, t2)

Λ
(n,n)
n×n + Cn−1

t (sn, sn)
,

where m0 and m0
t are the prior means and C0 and C0

t the prior
covariances of the state and derivatives.



Consistency of Sampling Scheme

I For a given t ∈ [a, b] we find n such that t ∈ [sn, sn+1], and bound the
expected absolute difference between the nth probabilistic solution and
the exact solution as follows,

βn(t) := E
{
|u(t)− u∗(t)|

∣∣ f1:n, θ,Ψ
}

= E
[
u(t)− u∗(t) | f1:n, θ,Ψ

]{
1− 2Φ

(
−

E
[
u(t)− u∗(t) | f1:n, θ,Ψ

]√
Cn(t , t)

)}

+

√
2
π

Cn(t , t) exp

{
−
(
E
[
u(t)− u∗(t) | f1:n, θ,Ψ

])2

2Cn(t , t)

}
,

≤
∣∣E{u(t)− u∗(t) | f1:n, θ,Ψ

}∣∣+

√
2C1(t , t) (9)



Figure: Illustration of method for generating a sample from the joint distribution of
derivative observations and possible trajectories with density p

(
u(t), f1:N | θ,Ψ

)
. Given

two derivative model realisations (red points), we obtain a posterior distribution over the
derivative space (top left) and over the state space (bottom middle). A sample is then
drawn from the predictive posterior over the states at the next time point sn (bottom

middle), and a model realisation is obtained by mapping u(sn) to the derivative space
via the function f (top middle, rightmost red point). Given these three model

evaluations, this procedure may be repeated (bottom right, top right).



Posterior Sampling for Inverse Problem

Algorithm 2 Draw K samples from the posterior distribution with density
p
(
θ, u(t) | y(t),Ψ

)
1: Initialise θ and conditionally sample a realisation of the state u(t) ;
2: for k = 1 : K do
3: Propose θ′ ∼ q(θ′ | θ), where q is a proposal density;
4: Sample a probabilistic realisation of the state u′(t) conditioned on θ′ via

Algorithm 1;
5: Compute:

ρ =
q(θ′ | θ)

q(θ | θ′)
p(θ′)

p(θ)

p
(
y(t) | G

(
u′(t), θ′

)
,Σ
)

p
(
y(t) | G

(
u(t), θ

)
,Σ
) ;

6: if min{1, ρ} > U[0, 1] then
7: Update θ = θ′;
8: Update u(t) = u′(t);
9: end if

10: Return θ, u(t).
11: end for



Heat Equation PDE

Figure: We illustrate the probabilistic output of the solution to the heat equation PDE,
with κ = 1, integrated between t = 0 and t = 0.25 using two grid sizes; the coarser

mesh (shown in blue) consists of 15 spatial discretisation points and 50 time
discretisation points, the finer mesh consists of 29 spatial discretisation points and 100

time discretisation points. We show the spatial posterior predictions at three time
points; t = 0.02 (top), t = 0.12 (middle) and t = 0.22 (bottom). The exact solution at
each time point is represented by the green line. The error bars show the mean and 2

standard deviations for each of the probabilistic solutions calculated using 50
simulations.



Heat Equation PDE

Figure: We illustrate the inverse problem by performing inference over the parameter κ
in the heat equation, integrated between t = 0 and t = 0.25. We generate data over a

grid of 8 spatial discretisation points and 25 time discretisation points by using the
exact solution with κ = 1, then adding noise with standard deviation of 0.005. We firstly

use the probabilistic differential equation solver (PODES) using three grid sizes; a
coarse mesh consisting of 8 spatial discretisation points and 25 time discretisation

points (far left), a finer mesh consisting of 15 spatial discretisation points and 50 time
discretisation points (second from left), and a further finer mesh consisting of 29 spatial

discretisation points and 100 time discretisation points (second from right). Note the
change in scale as the posterior variance decreases with increasing resolution of the
discretisation. As an illustrative comparison, we show the posterior distributions using
a deterministic forward in time, centred in space (FTCS) integration scheme (far right).
If the discretisation is not fine enough, we obtain an overconfident biased posterior that
assigns negligible probability mass to the true value of κ. In contrast, use of the exact

solution produces a perfectly unbiased posterior, as expected.



Lorenz Dynamic System

I Sampling yields consistent inference for Lipschitz-continuous equations

I Consider sampling solutions for Lorenz system

u̇ = −σu + σv

v̇ = −ru − v − uw

ẇ = uv − bw ,

(u(a), v(a),w(a)) = (u0, v0,w0).

I Setting (σ, r , b) = (10, 8/3, 28), initial states (−11,−5, 38) neighbouring
trajectories diverge exponentially fast

I Probabilistic solution using 3000 equally spaced solver knots on the
interval (0, 10). Squared exponential covariance function, length scale
twice step size, prior precision 1e−3, reflecting prior knowledge system
exhibits chaotic dynamics.
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Lorenz Dynamic System

Figure: One hundred sample solutions drawn from posterior Gaussian measure for the
Lorenz system under a fixed initial state, and fixed step size. Probabilisitic description

of the chaotic behaviour resulting from the finite mesh approximation.



Example: Navier-Stokes Equations (2-d domain)

The Navier-Stokes (NS) PDEs model the time evolution of P components of
the velocity, u : D →RP , of an incompressible fluid on a spatial domain X .
The NS boundary value problem on the spatio-temporal domain D = X × T
is given by:


∂
∂t u− θ1 ∆u +

(
u · ∇

)
u = f−∇p, (x , t) ∈ D ,

∇ · u = 0, (x , t) ∈ D ,∫
u(j) dx = 0, (x , t) ∈ D , j = 1, 2,

u = uB, (x , t) ∈ X × {0}.

(10)

This model is parameterized by the viscosity of the fluid, θ1 > 0; the pressure
function p : D → R; and the external time-homogeneous forcing function
f : X → R. We consider the NS equations over a 2-dimensional torus shaped
domain, X = [0, 2π)× [0, 2π), expressed in spherical coordinates. We
further assume periodic boundary conditions, and viscosity θ1 = 1× 10−3 in
the turbulent regime. For simplicity, we consider the unforced NS equations
(f = 0).
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Example: Navier-Stokes Equations (2-d domain)

Often, the quantity of interest is the vorticity, or local spinning motion of the
incompressible fluid, which we define as,

$(x , t ,θ) = −∇× u(x , t ,θ),

where clockwise rotation corresponds to positive vorticity. Vorticity can also
help to better visualize the solution of the NS system by summarizing the two
components of velocity by a one-dimensional function.

The Navier-Stokes model was reduced to a set of 64× 64 stiff coupled ODEs
with associated constraints through a pseudo-spectral projection in Fourier
space.

The spatial discretization grid was equally spaced. The initial velocity field is
generated from a bivariate normal distribution at each of the mesh points.
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Example: Navier-Stokes Equations (2-d domain)

The probabilistic solution accounts temporal discretization uncertainty
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Kuramoto-Sivashinsky model of reaction-diffusion

I Kuramoto-Sivashinsky model of reaction-diffusion systems

∂

∂t
u = −u

∂

∂x
u − ∂2

∂x2 u − ∂4

∂x4 u,

I Domain x ∈ [0, 32π], t ∈ [0, 150]

I Initial function u(0, x) = cos (x/16)
{

1 + sin (x/16)
}

I Discretize spatial domain, obtaining a high-dimensional (128
dimensions) system of stiff ODEs

I Use the integrating factor method to transform the system to one of
purely nonlinear ODEs

I Probabilistic IVP solutions sampled using 2K uniform solver knots

I Fifteen solution samples illustrate uncertainty over domain propagates
through system resulting in noticeably distinct dynamics, not captured by
deterministic numerical solvers.
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Kuramoto-Sivashinsky model of reaction-diffusion

Figure: Side view and top view of a probabilistic solution realization of the
Kuramoto-Sivashinsky PDE with initial function u(0, x) = cos (x/16)

{
1 + sin (x/16)

}
and domain x ∈ [0, 32π], t ∈ [0, 150].



Kuramoto-Sivashinsky model of reaction-diffusion

Figure: Fifteen realizations of the probabilistic solution of the Kuramoto-Sivashinsky
PDE using a fixed initial function. The solution is known to exhibit temporal chaos.

Deterministic numerical solutions only capture one type of behaviour given a fixed initial
function, which can lead to bias when used in conjunction with data-based inference.
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I Exploit Riemann Manifold MCMC Langevin or HMC simulation
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I This representation only requires pre-computed solution of linear
systems for metric tensor of MMALA (and simplified version) and
RMHMC

I Highly efficient proposal mechanism for very high-dimensional scenarios
- see Girolami and Calderhead, 2011 for details.
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Inference for model of cellular signal transduction

I States rates of change described by delay differential equation system

u̇(1)(t) = −k1u(1)(t) EpoRA(t) + 2k4u(4)(t − τ)

u̇(2)(t) = k1u(1)(t) EpoRA(t)− k2u(2)2
(t)

u̇(3)(t) = −k3u(3)(t) + 0.5k2u(2)2
(t)

u̇(4)(t) = k3u(3)(t)− k4u(4)(t − τ)

u(2)(0) = u(3)(0) = u(4)(0) = 0 known and u(1) unknown.

I States observed indirectly via G : R3 ×Θ→ R4

G1(u, k) = k5

(
u(1) + 2u(3)

)
G2(u, k) = k6

(
u(1) + u(2) + 2u(3)

)
G3(u, k) = u(1)

G4(u, k) = u(3)/
(

u(2) + u(3)
)
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Inference for model of cellular signal transduction

Figure: Experimental data and sample paths of the observation processes obtained by
transforming a sample from marginal posterior state distribution by observation function
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Figure: Marginal parameter posterior based on sample of size 100K generated by a
parallel tempering algorithm utilizing seven chains, with the first 10K samples removed.
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