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Overview

I Background to the study of robust inference

• What is “robust inference”?
• Why is it increasingly important?

I Bayesian approaches to robust analysis

I Heavy-tailed (“outlier prone”) likelihood functions

I Robustness to changes in the prior

I Local-minimax actions



Preamble

• All of statistics, and all of statistical machine learning, is based on
assumptions

“nothing will come from nothing”

• For example, and of special interest here, underlying every
probabilistic (Bayesian) machine learning approach is the explicit
assumption of a joint probability distribution (the model), e.g. a
likelihood function (or sampling distribution if you’re Bayesian), for
observations

l(θ) ∝ Pr(x|θ),

where x denotes data and θ denotes all parameters in the model1,
and a prior

Pr(θ)

1I will, rather loosely, use the notation Pr(θ), p(θ), π(θ) inter-changeably to denote
either a distribution, density or mass function; making clear if the context dictates



Preamble

• The term ‘assumptions’ is somewhat vague, but for our purposes it
will suffice to cover statements and issues such as,

I Normality
I Independence and identically distributed (i.i.d.)
I Linearity
I Stationarity
I Parametric form of likelihood
I Prior (for Bayesian models)
I Data ascertainment and stability of training data to real-world

application environment

• and by ‘robust’ we shall take to mean

“....an insensitivity to small deviations from the
assumptions.” Huber & Ronchetti (2009)



• In statistics, the word was coined by Box (1953) when analysing the
effect of non-gaussian data when testing equality of variances

• It is important to note that robustness is contextual to the question
being addressed

- e.g. the Student distribution is robust to inference on location (mean)
to non-Gaussian data, but is not robust to loss of power in the t-test
in this scenario

- in fact, in a Bayesian framework, I believe that decision theory is the
appropriate framework to study robustness



Preamble

• ‘Robustness’ is a property that statisticians (machine learners) should
naturally seek out

- somewhat vacuous, as who would actively choose to be non-robust??

• In the words of Kadane (1984a):

”Robustness is a fundamental issue for all statistical
analyses; in fact it might be argued that robustness is the
subject of statistics.”

• this viewpoint aligns well with the notion of Statistics as precision in
imprecision

• Indeed, good statistical practice advocates the use of all available
tools including diagnostic plots, and graphical visualisation to protect
against overconfident inference and prediction



Preamble

• In what follows, we shall see that by seeking ‘robustness’ we will be
lead to select adopt one probability model, or class of probability
models, over another one, or one procedure over another

• Following Anscombe (1960), see also Huber (1972), we can view the
adoption of a robust model as a kind of insurance premium,

”I am willing to pay a premium (a loss of efficiency of, say,
5 to 10% at the ideal model) to safeguard against ill effects
caused by small deviations from it”

• So by robustness we will mean a trade off, I loose a (little) bit of
statistical efficiency versus an original model if true, in order to
protect myself against large misjudgements if the original modelling
assumptions are false



Historical context
• Historically, robustness was studied in the context of estimates of

central-location and spread

• Many eminent applied statisticians understood the danger of blindly
assuming normal (Gaussian) errors in physical datasets, e.g. both
Bessel (1818) and Newcomb (1886) noticed longer tails

Newcomb speaking of the Gaussian (Normal) distribution, page 343:
“As a matter of fact, however, the cases are quite exceptional in
which errors are found to really follow the law. The general rule is
that much more than one per cent of the errors exceed four times the
probable error. In other words, it is nearly always found that some of
the outstanding errors seem abnormally large.”

• or the following remark from an anonymous author (Anonymous,
1821) (translated, page 189) on an early form of α-trimmed means:

“...there are certain provinces in France, where, in order to determine
the average yield of an estate, it is custom to consider the yields over
a period of twenty consecutive years, remove the greatest and the
smallest of these numbers, and then to use the 18 remaining to
calculate the mean. Those who imagined this method, must have no
doubt considered that very abundant harvests and very poor harvests
were exceptions from the usual course of Nature, and thus one should
not make allowance for them.”



• The astronomer Eddington used the mean absolute deviation, (L1

norm) 1
n

∑n
i=1 |xi − x̄|, instead of the standard deviation (L2 norm)

to record variance claiming that it was a more accurate estimate of
the variation in the data

- Fisher (1920) showed that this lost 12% efficiency (as measured by
asymptotic relative efficiency)

• Thus, the dangers of the ”dogma of normality” (as Huber called it)
were not brought to light until Tukey (1960) looked at the mixture
model:

F (x) = (1− ε) · Φ(x) + ε · Φ(
x

3
)

and showed that for values of ε as small as 0.002 the standard
deviation is no longer better than the mean deviation.



• Huber (1964) was the first to provide a theoretical approach to robust
statistical inference. Deviations from normality motivated his initial
work on location and scale but this generalised to wider models, see
Huber & Ronchetti (2009)

• Note: Huber’s perspective is that robustness differs from
nonparametric and distribution-free models. For instance, the sample
mean is distribution-free but highly sensitive to outliers. Robustness
relates to parametric models having the following desirable properties:

I Efficiency: at assumed model (ideal model)
I Stability: with respect to small perturbations to assumptions, only

impairing performance slightly.
I Breakdown protection: larger deviations should not cause catastrophe.



What we will cover

• In these two lectures we will not spend much time on the classical
field of “robust statistics”, for which the interested researcher is
referred to Huber & Ronchetti (2009)

- e.g. so we shall not cover important areas of M-estimators, estimating
equations, sandwich estimators, leverage plots, breakdown numbers,....

• Rather we shall focus on robust probabilistic modelling from a
Bayesian perspective

• In one sense you could argue that Bayesian approaches are inherently
robust as they don’t condition on a single model but rather seek to
accommodate all aspects of uncertainty within a joint probability
model, p(x, θ), usually factorized as

p(x, θ) = p(x|θ)× p(θ)
= Likelihood× Prior

where p(θ) may cover a whole space of probability models deemed
plausible a priori



• Inference and prediction is made through the posterior distribution,
p(θ|x), accommodating the uncertainty under the support of the prior,

T =

∫
ψ(·; θ)p(θ|x)dθ

• Under a strict Bayesian position there is no issue with model
robustness

I You precisely specify your subjective beliefs through p(x, θ) and
condition on data to obtain posterior beliefs, taking actions according
to the Savage axioms

• However, even the modern founders of Bayesian statistics
acknowledged issues with an approach that assumes infinite subjective
precision.....



“Subjectivists should feel obligated to recognise that any opinion (so
much more the initial one) is only vaguely acceptable... So it is
important not only to know the exact answer for an exactly specified
initial problem, but what happens changing in a reasonable
neighbourhood the assumed initial opinion.” De Finetti, as quoted in
Dempster (1975)

“...in practice the theory of personal probability is supposed to be an
idealization of one’s own standard of behaviour; that the idealization
is often imperfect in such a way that an aura of vagueness is attached
to many judgements of personal probability...” Savage (1954)

As Berger points out, many people somewhat distrust the Bayesian
approach as “Prior distributions can never be quantified or elicited
exactly (i.e. without error), especially in finite amount of time” –
Assumption II in Berger (1984). In which case what does the resulting
posterior distribution p(θ|x) actually represent?



• The standard solution is to first specify an operational model p(x, θ),
to the best of your available time and ability, and then investigate
sensitivity of inference or decisions to departures around p(x, θ),
typically assuming that p(x|θ) is known so that divergence is with
respect to the prior

• This idea has origins in the work of Robbins (1952) and Good (1952)
with many important contributions since that time. We mention just
a few pertinent areas below, referring the interested reader to the
review articles of Berger (1984), Berger (1994), Wasserman (1992),
and Ruggeri et al. (2005), as well as the collection of papers in the
edited volumes of Kadane (1984b) and Rios Insua & Ruggeri (2000).

• Robustness was one of the most active research areas in Bayesian
statistics in the 1990s and earl 2000s, following which interest tailored
off – principally as computational methods (MCMC) and hierarchical
and nonparametric models allowed one to apply evermore complex
models – so that the methods outpaced the data

• However, there are a number of recent (and long standing)
developments that merit a reappraisal



Rise of approximate models

• In order to address the increasing complexities of modern data
analysis there has been a rise in the development and use of
computationally efficient approximate models

I INLA
I Composite Likelihoods
I ABC
I Variational Bayes
I PAC likelihoods
I Gibbs posteriors
I Monte Carlo representations

• These models are approximate by design, but they are often the only
applicable methods we have

• But what are the consequences of these approximations?
I how robust is the inference to the inherent model misspecification?
I if interest is in the science (rather than pure prediction) what does the

posterior p(θ|x) represent?
I what does the in hand “bag-of-samples” θi ∼ p(θ|x) refer to?

• In an era of big-data and big-models we can’t check all assumptions



M-closed

I Bayesian statistics is
conditional on the model being
true

I the so called M-closed
perspective (Bernardo &
Smith (2009))

I Formally, in order to update
you have to assume that the
true likelihood, p(x|θ), is
contained under the support of
the prior

I and....

All of Bayesian statistics is
model based



Bayesian robust priors

• Robustness to misspecification in Bayesian inference is not a new
topic

• Rich literature in the 1980s and early 1990s

• Robust Bayesian analysis was one of the major research themes in the
field

I principally investigating robustness in the prior (assuming the
likelihood is known)

I as you alter the likelihood then the meaning of the prior changes

I excellent reviews in Berger (1994; 1985 )



• The field tailored off somewhat thereafter as methods and
computation outpaced the complexity of data sets

• MCMC, hierarchical models, Bayes nonparametrics all allowed for
indexing of richer and richer model classes

• However, big-data has now overtaken these methods (leading to the
rise of approximate models)

• This merits a reappraisal of Bayesian robustness in the modern
context

I incorporating interesting recent developments in robust control,
macroeconomics and finance literature



Let’s begin with robust likelihoods....



Robust Linear Models

• It is well known that the Normal linear model is sensitive to outliers

y = Xβ + ε

ε ∼ N(0, σ2I)

• Conventional approach is to robustify the likelihood (sampling
density) from Normal to say Student

y = Xβ + ε

ε ∼ tν(0, σ)

• Note:
I The standard non-Bayesian approach would be to use a robust

estimator for β, such as M-estimation and Huber likelihood
I Bayesian analysis is more complicated as you have to define a joint

probability model, you’re not free to just define an estimator – which
is why robustness is particularly important to Bayesian analysis



Outlier Prone Likelihoods

• In classical statistics we talk of “robustness to outliers” (unusual
observations)

• In Bayesian statistics we talk of “outlier prone” sampling distributions
(likelihoods) (Neyman & Scott (1971), O’Hagan (1979)); rather than
“outlier resistant”

• Bayesian models are generative, hence you want a model (sampling
distribution) that places reasonable probability on generating an
outlying observation

• Robust Bayesian inference dates back to work of de Finetti (1961)
(the founder of modern Bayesian statistics) who pointed out that
outliers should not be rejected but rather probabilistically down
weighted



• de Finetti (1961) considered the following sampling model for the
location parameter, µ, of the Normal

yi ∼ N(µ, λiσ
2)

where each observation has its own variance parameter, distributed
Inverse-Gamma,

λi ∼ IG(ν/2, ν/2)

“each observation is taken using an instrument with normal error, but
each time chosen at random from a collection of instruments of
different precisions, the distribution of the precisions being that

indicated (by the mixing distribution)” (de Finetti, 1961)



• We can clearly generate samples according to the above joint
distribution through the following simple algorithm

1. Draw λi ∼ IG(ν/2, ν/2)
2. Draw yi|λi ∼ N(µ, λiσ

2)

• We can plot out the joint samples {yi, λi}, for various values of ν,
say ν ∈ {2, 10, 100} with µ = 0 and σ2 = 1



ν = 2

Figure: Sample of {yi, λi} for ν = 2, λi ∼ IG(1, 1)



ν = 10

Figure: Sample of {yi, λi} for ν = 10, λi ∼ IG(5, 5)



ν = 100

Figure: Sample of {yi, λi} for ν = 100, λi ∼ IG(50, 50)



qq-plot of {y(ν=10)
i , y

(ν=100)
i }

Figure: qq-plot of (sorted) samples from yi|ν = 10 versus yi|ν = 100



In fact it is well known that the hierarchical model,

yi ∼ N(µ, λiσ
2)

λi ∼ IG(ν/2, ν/2)

defines a marginal distribution π(yi) =
∫
λ
π(yi|λ)π(λ)dλ,

yi ∼ Stν(µ, σ2)

a Student density with ν degrees of freedom

• So that the “robust” Student density naturally arises by thinking of
each observation as having some additional individual component of
variance say due to individual experimental heterogeneity, de Finetti
(1961)



Characterising Influence via Score Functions

• More formally, score functions provide a really useful method to
examine model sensitivity to observations

• Suppose that our current beliefs about parameters θ are summarized
by p(θ)

• The influence of a new observation, drawn from p(x | θ), on beliefs
about a particular component θj can be usefully measured through
the posterior score function [West (1984), Haro-Lopez & Smith
(1999)],

∂

∂θj
log p(θ | x) =

∂

∂θj
log p(θ) +

∂

∂θj
log p(x | θ).

• The dependence of the posterior score function on the data x is
through the efficient score function ∂

∂θj
log p(x | θ)



• Clearly
∂

∂θj
log p(θ | x) =

∑
i

∂

∂θj
log p(θ | xi)

which highlights the additive contribution of the i’th observation, xi,
to the j’th partial derivative of the log-likelihood function evaluated
at θ

• The key point to note is that at the posterior mode, maximum a
posteriori (MAP), we have∑

i

∂

∂θj
log p(θ̂ | xi) = 0

• That is, at the MAP, θ̂ = arg maxθ p(θ|x), the sum of the individual
scores must equal 0



Efficient score functions

• Intuitively we can see that if one of the scores is large, then this will
influence the MAP estimate, which must move (so to speak) in order

to position itself such that, by definition,
∑
i
∂
∂θj

log p(θ̂ | xi) = 0

• The MAP is at the balancing point of the score function realisations

• So by examining the form of the score functions for different sampling
distributions (models) we can see how outlier prone a distribution is

I Remember – “outlier prone” is a good thing here



Score Function examples

Consider a standardized observation z, which is mean zero’d and
standard deviation 1, z(x, µ, σ) := (x− µ)/σ

We can look at the relative influence on the central location (mean) and
scale (variance) of an observation under the Gaussian and Student
distributions

• Gaussian, N(x|µ, σ2):

I location efficient score

∂

∂µ
log
[
N(x | µ, σ2)

]
=
z

σ

I scale efficient score

∂

∂σ
log
[
N(x | µ, σ2)

]
=
z2 − 1

σ



Gaussian efficient score functions

Figure: efficient score functions for location and scale of a Gaussian



Gaussian efficient score functions for σ = 1 and σ = 4

Note:

I the influence (slope) on the location is σ−1

I observations, |x| ≤ σ, have a negative score on ∂
∂σ log p(σ|x), and

those |x| > σ a positive



• Student, tν(x | µ, σ2):

I location efficient score

∂

∂µ
log
[
tν(x | µ, σ2)

]
=

1

σ

(
(ν + 1)z

ν + z2

)
I scale efficient score

∂

∂σ
log
[
tν(x | µ, σ2)

]
=

1

σ

(
(ν + 1)z2

ν + z2
− 1

)



Student df= 4, σ = 1, efficient score functions

For the Student we note that

I ∂
∂µ log

[
tν(x | µ, σ2)

]
→ 1

σ

(
ν+1
z

)
as z →∞

I ∂
∂σ log

(
tν(x | µ, σ2)

)
→ ν

σ as |z| → ∞.



Gaussian and Student efficient score functions compared

Figure: efficient score functions overlaid for location and scale of a Normal and
Student-4



Robust Bayesian Analysis (to the prior)

• In his excellent review Berger (1994) defines

“Robust Bayesian analysis is the study of the sensitivity of Bayesian
answers to uncertain inputs.”

I for other good overviews of robust Bayesian analysis see Rios Insua &
Ruggeri (2000) and Ruggeri et al. (2005)

• Bayesian analysis involves the joint specification of p(x|θ) and the
prior p(θ)

• The methods discussed above gives us tools to think about robust
outlier prone sampling distributions (likelihoods) so what about tools
for robust prior specification?



Robust prior specification

• The majority of papers dealing with formal methods for robust
Bayesian analysis are concerned with prior specification

• This is not so surprising as
I in many situations it may be felt that priors are more uncertain than

the sampling distribution (likelihood function)
I the major objection/contrast to a non-Bayesian approach is in the use

of the prior
I the prior is defined with reference to the parameters in the model

(likelihood), so changing the likelihood would necessitate a change in
the prior anyhow

• One way to deal with sensitivity in the prior is to construct default
(automated) specifications that have minimal influence (in some
sense) on the answers, e.g. so called noninformative, reference, and
maximum entropy priors

• A difficulty here is that what is a noninformative prior for one
question might be highly influential for another



Sensitivity to your operational prior specification

• Perhaps the clearest way, as mentioned in the introduction, is to
progress with an operational prior, p0(θ), specified to the best of your
time and effort constraints

• Then explore sensitivity of “answers” to perturbations around the
prior via a class of distribution functions

• Note:
I most “answers” or posterior quantities of interest can be written as

functionals, ψ, which are expectations with respect to the posterior
model

ψ =

∫
g(θ)p(θ|x)dθ

e.g. posterior mean; credible intervals; predictions; quantiles;.....

• Robust Bayesian methods are usefully classified as either “local” or
“global”



• Local approaches look at functional derivatives of posterior quantities
of interest with respect to perturbations around the baseline model,
e.g. Ruggeri & Wasserman (1993) Sivaganesan (2000); see also
Kadane & Chuang (1978) who consider asymptotic stability of
decision risk

• We shall focus on global approaches.....



Global prior robustness

• Global approaches consider variation in a posterior functional of
interest, ψ, within a neighbourhood

p(θ) ∈ Γ

where Γ is a ball (or class) of distribution functions around the
operational prior model p0

M

p0

Γ

Figure: Graphical representation of neighbourhood of alternative priors
constructed around the operational prior p0



• A typical quantity for sensitivity analysis would be the range
(ψinf , ψsup) where

ψinf = inf
π∈Γ

∫
g(θ)p(x|θ)π(θ)dθ

and

ψsup = sup
π∈Γ

∫
g(θ)p(x|θ)π(θ)dθ

• The challenge is to define the class of priors (the nature and size of
Γ) so as to capture plausible ambiguity in p0, while taking into
account factors such as ease of specification and computational
tractability, Berger (1994; 1985 section 4.7)



Choosing the neighbourhood class of priors, Γ

• The art and science of choosing good classes of priors includes
I the class should be easy to elicit and interpret
I easy to handle computationally
I be wide enough to cover reasonable uncertainty, but not so wide as to

be implausible
I adaptable to high dimensions and possible constraints

• One important example is the ε-contamination neighbourhood
(Berger & Berliner, 1986) formed by the mixture model,

Γ = {π = (1− ε)p0 + εq, q ∈ Q},

where ε is the perceived contamination error in p0 and Q is a class of
contaminant distributions



• It is usual to restrict Q so that it is not “too big”, for instance by
including only uni-modal distributions Berger (1994), for which it is
shown that the solutions have tractable form

• A nice feature of the ε-contaminated class of priors is that the
posterior has a mixture form

pΓ(θ|x) = w(x)p0(θ|x) + [1− w(x)]q(θ|x)

with weights

w(x) = 1 +
εm(x|q)

(1− ε)m(x|p0)

where m(x|·) denotes the marginal (integrated) likelihood; prior
predictive, or evidence

• Other approaches consider frequentist risk, such as Γ-minimax that
investigates the minimax Bayes (frequentist) risk of ψsup for π ∈ Γ
whereas conditional Γ-minimax procedures (Vidakovic, 2000) study
the maximum expected loss across prior distributions within Γ



Robust control and econometrics

• Independent of the above developments in statistics, control theorists
were investigating robustness to modelling assumptions

I Control theory broadly concerns optimal intervention strategies
(actions) on stochastic systems so as to maintain the process within a
stable regime. Hence it is not surprising that decision stability is an
important issue

• Robust control theory, principally developed by Whittle (1990),
considers the case when Nature is acting against the operator through
stochastic buffering by non-independent noise. Whittle established
that under a malevolent Nature with a bounded variance an optimal
intervention can be calculated using standard recursive algorithms



• In economics, Hansen and Sargent in a series of influential papers
(e.g. 2001a, 2001b), generalised ideas from Whittle (1990) and
Gilboa & Schmeidler (1989) motivated by problems in
macroeconomic time series; see Hansen & Sargent (2008) for a
thorough review and references.

• H&S defined a robust action as a local-minimax act within a
Kullback-Leibler (KL) neighbourhood of the posterior πI ≡ π(θ|x)
through exploration of,

ψ(a)
sup = sup

π∈Γ

∫
L(θ)π(θ|x)dθ

where Γ denotes a KL ball around π(θ|x),

Γ = {π :

∫
π(θ) log

(
π(θ)

π(θ|x)

)
dθ ≤ C}.

and L(θ) is a real-valued loss function
I e.g. L(θ) could be the weighted prediction error, although more

formally it is the loss in taking the action if the unknown state
happened to be θ



Ex-post robustness
• So consider π(θ|x) as a useful, but approximate model
• Investigate robustness via the minimax (worst possible outcome)

distribution, π
(sup)
a ≡ π∗a, constrained to be within some

neighbourhood, Γ, around π(θ|x)

C

M

π∗a

π(θ|x)

Γ

Figure: Graphical representation of local-minimax distribution π∗ within a ball
of radius C around the reference model πI



• H&S considered the Gaussian dynamic state-space model (Kalman
filter). Breuer & Csiszár (2013a, 2013b), building on the work of
Hansen and Sargent, derived corresponding results for arbitrary
probability measures. Under mild regularity conditions, and using
results from exponential families and large deviation theory they
obtain the exact form of π∗a for any π(θ|x) given the KL ball of size C,

as well as an estimate for ψ
(a)
sup, see also Ahmadi-Javid (2011, 2012)

• In fact there is a fairly simple form (and proof) for the worst possible
local model



Decision robustness

• The local-minimax distribution is defined as

π(sup)
a = arg sup

π∈Γ
Eπ[La(θ)]

with expected loss Eπ∗
a
[La(θ)], where La(θ) quantifies the loss

(negative reward) you will receive if the true state is θ

• In particular (for many good reasons) we take the Kullback-Leibler
(KL) neighbourhood Γ around π(θ|x)

I where Γ ⊂M is the KL ball of distributions around π(θ|x)

Γ = {π :

∫
π(θ) log

(
π(θ)

π(θ|x)

)
dθ ≤ C}.

• Somewhat remarkably, under mild regularity conditions, and using
results from exponential families and large deviation theory, Breuer &
Csiszár obtained the exact form of π∗a for any π(θ|x)



Form of local-minimax distribution

In fact there is a less general but simple(r) proof for the form of the
local-minimax distribution

Theorem

Let
π∗a = arg sup

π∈Γ
Eπ[La(θ)]

be the local-minimax distribution for Γ = {π : KL(π ‖ πI) ≤ C}

Then π∗a has the following form,

π∗a(θ) =
eλLa(θ)πI(θ)∫
eλLa(θ)πI(θ)dθ

where λ a non-negative real valued scalar monotone in C.



Proof.

The function minimisation problem, π∗a = arg maxπ∈ΓEπ[La(θ)], has a
Lagrange dual form, (think of this as penalized nonparametric likelihood
functions, c.f. the Lasso)

π∗a = arg inf
π∈M

{
Eπ[−La(θ)] + λ−1KL(π ‖ πI)

}
for some λ ∈ [0,∞), with C < C ′ =⇒ λ < λ′.

So the task is to select a distribution function that minimises the rhs,
from the space of all probability measures,



Hence,

π∗a = arg inf
π

{∫
−La(θ)π(θ)dθ + λ−1

∫
π(θ) log

(
π(θ)

πI(θ)

)
dθ

}
= arg inf

π

{∫
π(θ) log

(
π(θ)

πI(θ) exp[λLa(θ)]

)
dθ

}
∝ πI(θ) exp[λLa(θ)] (1)

The result follows. Watson & Holmes (2014)

See Ahmadi-Javid (2012), Breuer & Csiszár (2013a) who arrive at the
same result through different means.



Comments on the local-minimax π∗a

• The Γ-local minimax distribution eλLa(θ)πI(θ)∫
eλLa(θ)πI(θ)dθ

looks like an

exponentially tilted density

• For linear loss, La(θ) = Aθ, the local-minimax π∗a is the well known
Esscher Transform used for option pricing in actuarial science

• Also, clearly,

I λ→ 0, π∗ → πI leads back to Savage
I λ→∞, π∗ → δθ∗(θ) leads to Wald’s minimax solution

where λ defines the neighbourhood (KL ball) around πI

• Note:

I π∗a will lie on the boundary of the ball, so KL(π∗a ‖ πI) = C
I π∗a is unique by strict convexity of the KL divergence
I The most favourable distribution is, by symmetry,

π(inf)
a ∝ e−λLa(θ)πI(θ)



• Substituting π∗a back into the KL divergence we see,

C = KL(π∗a ‖ πI)

=

∫
π∗a(θ) log

(
Z−1
π∗ exp[λLa(θ)]

)
dθ

= λEπ∗
a
[La(θ)]− logZπ∗

a

where Zπ denotes the normalising constant (prior predictive, marginal
likelihood) or “partition function” of π

• Moreover, by Jensen’s inequality

KL(π∗a ‖ πI) = λEπ∗
a
[La(θ)]− logEπI [exp(λLa(θ)]

≤ λ
[
Eπ∗

a
[La(θ)]− EπI [La(θ)]

]
The KL divergence is bounded above by λ times the difference in
expected losses under the two distributions.



KL and coherence

• In fact the KL divergence is the only coherent divergence criteria one
can use (for proof see Watson & Holmes (2014) taken from Appendix
of Bissiri et al. (2013))

• That is, given a data set x = {x1, . . . , xn}, prior model π(x, θ), and
loss function L(θ). For coherence we require,

π(sup)
a (θ|x1,...,m)f(xm+1,...,n|θ) = π(sup)

a (θ|x1,...,n)

where f(x|θ) is the likelihood, for all m = 0, . . . , n

• In words, you should obtain the same inference for the same
information. The KL is the only divergence to achieve this.

• Conceptually this means we can consider specifying the operator a
priori to obtain a local-minimax robust (data dependent) prior

π∗(θ) ∝ π(θ)eλL(θ)

and update this with the standard likelihood



Example I – Prediction

• Consider providing a predictive distribution for a future observation

π̂(y|x), for response variable of interest y given covariates x

• The local proper scoring rule suggests the log-loss L(y) = − log π(y|x)
(Bernardo & Smith, 1994)

I Note: scoring rules are designed to keep Bayesian’s honest in their
model specifications

• Clearly the standard Bayesian solution is report your honest beliefs as

π̂I(y|x) = π(y|x), where πI(y|x) =
∫
π(y|x, θ)πI(θ)dθ

• However this assumes that the model is correct and moreover that the
predictive contours do not change with time

I c.f. “concept drift” in data mining



• The local-minimax solution above however leads to

π̂(y|x) ∝ e−λ log π(y|x)π(y|x)

∝ πI(y|x)1−λ

for λ ∈ (0, 1)

• This leads to a tempered distribution that fattens the tails and
smooths the modes of π(y|x), with temperature given by your trust in
your model

• We see that predictive tempering arises as the decision theoretic
(local-minimax) solution to prediction under model misspecification

I you should only report π(y|x) if you have complete faith in your
model, equating to λ = 0

I c.f. Hjort and Walker (2001) on consistency



Example II – unknown likelihood (and PAC-Bayesian)

• Suppose you hold prior beliefs about a parameter θ but don’t know
how to specify p(x|θ), and hence lack a model p(x, θ)

• For example, consider θ as the median of FX with unknown
distribution

• We don’t have a likelihood but we could have a well defined prior hence

• and a well defined loss function that we would wish to maximise utility
against for specifying beliefs, e.g. for the median we should take

L(θ) = −
∑
i

|xi − θ|



• This leads to the local-minimax distribution as

π(inf)
a = Z−1e−λ

∑
i |xi−θ|p(θ)

where λ trades off fidelity to the data against fidelity to the prior

• This has the form of a Gibbs Posterior or PAC-Bayesian approach
(Zhang (2006a,b); Bissiri et al. (2013); Dalalyan & Tsybakov (2008,
2012); Langford & Schapire (2005))

• So we can interpret PAC-Bayesian or Gibbs posteriors as decision
theoretic local-maximin solutions in the absence of a known sampling
distribution



Computational decision theory
• Conventional computational decision theory via Monte Carlo

computes the expected loss of an action a given partial information x
and a model p(θ|x) via

Ûa =
1

N

N∑
i=1

La(θi)

θi ∼ π(θ|x)

where, as stated above, La(·) is a real-valued loss (negative utility, or
negative reward) function and πI(θ) ≡ π(θ|x) denotes Your
subjective posterior beliefs, given all available information

• We can write this as a weighted average with uniform weights on
each MC sample drawn from the posterior

Ûa =
N∑
i=1

wiLa(θi)

θi ∼ π(θ|x)

wi =
1

N



Robust computational decision theory

• Robust methods use retrospective re-sampling or re-setting of the
weights,

w̃i 6=
1

N

either deterministically (as above with wi ∝ exp[λL(θi)]) or
stochastically (as below), we are able to make formal statements
about decision robustness under model approximation

• Informally you can think of this as shaking your model to explore
robustness, by retrospectively perturbing the Monte Carlo sample
weights in a very particular way

I there are close connections to Bayes nonparametrics and the Bayesian
bootstrap



Exploring variation in expected losses within Γ

• The use of the minimax outcomes gives us one (extreme) solution,

π
(sup)
a or π

(inf)
a , in the KL ball

• Looking at the distribution of expected loss within the ball might be
more informative, and more natural from a Bayesian perspective

C

M

π∗a
πI

Γ

• However, with the neighbourhood Γ defined via KL(π ‖ πI) calculating
this distribution over the set Γ = {π : KL(π ‖ πI) ≤ C} is challenging



Change of neighbourhood to Γ = {π : KL(πI ‖ π) < C}

• We now consider a change of neighbourhood, to the divergence of
Nature from πI , KL(πI ‖ π), so now we define

Γ = {π :

∫
πI(θ) log

(
πI(θ)

π(θ)

)
dθ ≤ C}.

• Interestingly we no longer have an analytic form for the local-minimax
distribution

π(sup)
a 6= Z−1eλL(θ)πI(θ)

• However we do have Monte Carlo methods for calculating both the
minimax and the variation in loss over Γ



Taking expectations over Γ

• To take expectations over distributions in the neighbourhood of πI we
require a probability distribution on probability measures within Γ
centred on πI

• This is classically a problem in Bayesian nonparametrics

• But here we are considering nonparamateric priors on posterior
distributions to explore the ex-post sensitivity of misspecification

• The Dirichlet Process (Ferguson 1973) is the cornerstone of Bayes NP
and a natural place to start



Definition

Dirichlet Process: Given a state space X we say that a random
measure P is a Dirichlet Process on X , P ∼ DP (α, P0), with
concentration parameter α and baseline measure P0 if for every finite
measurable partition {B1, . . . , Bk} of X , the joint distribution of
(P (B1), . . . , P (Bk)) is a k dimensional Dirichlet distribution
Dir(αP0(B1), . . . , αP0(Bk)).



Bayesian Nonparametric prior

• Using a DP we can sample from distributions in the neighbourhood of
πI by setting the baseline measure of the DP to be πI ,

π ∼ DP (α, πI)

where α defines the neighbourhood size: larger α means a tighter
(smaller) neighbourhood concentrated around the baseline πI

In practice the DP has a constructive definition,

π̃ =

m∑
i=1

wiδθi(θ)

θi ∼ πI

w ∼ Dirm(α/m, . . . , α/m),

m → ∞ (2)

where the θi’s are iid from πI and independent of the Dirichlet weights



• This highlights one difficulty with the use of the DP. The discrete
atomic structure means that two draws do not have the same support

• Hence the Kullback-Leibler divergence KL(πI ‖ π̃) is not defined

• In order to circumvent this we introduce the notion of coupled-DPs.



Coupled Dirichlet Process. We say that two or more Dirichlet process
samples {π(i), π(j)} are coupled,

π(i), π(j) ∼ CDP (αi, αj , π0)

if they share a common set of baseline atoms, {δθs(θ)}ms=1 drawn from
the baseline measure, π0, but with independent Dirichlet weights,

π̃(i) =

m∑
s=1

w(i)
s δθs(θ)

π̃(j) =

m∑
s=1

w(j)
s δθs(θ)

θs ∼ π0

w(i) ∼ Dirm(αi/m, . . . , αi/m),

w(j) ∼ Dirm(αj/m, . . . , αj/m),

m → ∞

• Now, given two realisations we find the KL divergence as,

KL(π̃(i) ‖ π̃(j)) =

m∑
s=1

w(i)
s log

(
w

(i)
s

w
(j)
s

)



• Now consider the Monte Carlo representation of the baseline measure
π̃ ∼ DP (∞, πI),

π̃I =
1

m

m∑
i=1

δθi(θ)

θi ∼ πI

m → ∞ (3)

• Then we can compute a measure of divergence of π∗ ∼ DP (α, πI) to
its baseline measure via the coupled Dirichlet process representation,
π̃∗, π̃I ∼ CDP (α,∞, πI), for which,

KL(π̃I ‖ π̃∗) =
1

m

m∑
i=1

log

(
1

mwi

)
w ∼ Dirm(α/m, . . . , α/m),

• This KL is itself a random variable and it is interesting to investigate its
distribution from the perspective of the neighbourhood size around πI



• It will be helpful to consider the representation of the Dirichlet as a
normalised sum of Gamma random variables,

Gi ∼ Gam(α, 1)

wi =
Gi

G1 + · · ·+Gm

then w ∼ Dirm(α/m, . . . , α/m)

• Now let m→∞ and let G =
∑
iGi, so that G ∼ Gam(mα, 1)

• Under this representation we have for π̃, π̃I ∼ CDP (α,∞, πI),

KL(π̃I ‖ π̃) =
1

m

m∑
i=1

log

(
1

mwi

)
= log(G)− 1

m

∑
i

log(Gi)− logm.



Distribution of KL(π̃I ‖ π̃)

Proposition: Let π̃, π̃I ∼ CDP (α,∞, πI) then π̃ is distributed on the
shell of a KL ball, Γ̃, centered on π̃I of radius C with,

C = logα− ψ0(α)

where ψ0(·) denotes the digamma function

Proof: from the properties of the log-Gamma distribution

• That is, when you sample from a DP you only sample in a very small
region of model space at a KL divergence of logα− ψ0(α) from the
baseline measure

• This is analogous to the well known result that for the multivariate
Gaussian, X ∼ N(0, σ2Ip), for large p we have

Pr(| ‖ X ‖2 −σ2p| > εσ2p) ≤ 2e−pε
2/24

almost the entire measure is contained in a thin-shell of radius σ
√
p



Functional (φa, α)
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Figure: Sample KL radii c ∼ U [0, C] and then sample π ∼ DP (α(c), πI) and
calculate distribution on a functional of interest



To recap....

We can retrospectively use MC samples from πI(θ) to explore sensitivity
to model misspecification and robustness of decisions (and expected loss)
by using local re-weighted representations

π̃ =
1∑
wi

∑
i

wiδθi(θ)

θi ∼ p(θ|x)

Where:

• Local-minimax, KL(π ‖ π(θ|x)) ≤ C, deterministic re-weights

wi = eλL(θi)

• Coupled-DP, KL(π(θ|x) ‖ π) ≤ C, stochastic re-weights

wi ∼ Ga(α−1[c], 1)

c ∼ U(0, C)



Case Study I: Regression Variable Selection with Costs

• We consider the problem of variable selection under costs

• Let X = {xj}pj=1 denote the set of possible regressors with response
variable of interest Y

• Let cj denote the cost in measuring the jth variable

I e.g. costs may relate to genotyping, sequencing or collection of
phenotype data

• An action a is defined as a subset of covariates γa = {γi}pj=1 where

γj = 1 if the jth regressor is included and zero otherwise

• γa can be seen as a possible model, and the decision task is one of
model selection

• The loss function defined over a model γa trades accuracy of
prediction against total cost of data collection:

La(γ) = L(y) +

p∑
j=1

cj ∗ γaj



Prediction of hospital mortality rate

• We consider a data set of hospital admissions analysed in Fouskakis &
Draper (2008)

• n = 2, 532 observations of 83 regressors and a univariate response
y ∈ {0, 1} which is 1 if the patient dies within 30 days of admission
and zero otherwise

• Collection costs for variables vary from 0.5 to 10 with a median cost of
1

• Loss to data is the log-information

L(y) =
∑
i

− log π(yi|xi)

• We use simulated annealing to generate six models with highest
expected utility

• Explore robustness of the “best” model



Summary of top models found by simulated annealing

Model

Variable Action 1 Action 2 Action 3 Action 4 Action5 Action 6

Index Name Cost

1 Systolic BP score 0.5 * * * *
2 Age 0.5 * * * *
3 Blood urea nitrogen 1.5 *
4 APACHE II coma score 2.5 * * *

12 Initial temperature 0.5 * * * *
14 Chest pain day 1? 0.5 * *
35 Hepatobiliary history? 0.5 * * * * *
36 Renal history score 1.0 *
37 APACHE respiratory rate score 1.0 * * * *
51 Confusion day 1 0.5 * * *
54 Pulmonary edema score 0.5 *
61 Wheezing at admission? 0.5 *
62 Blood system count 2.5 * * * * *
68 Co-morbid smoking score 0.5 *
70 APACHE pH score 1.0 *
74 Cardiac history score 0.5 * * * * * *
75 Neurologic history score 0.5 * * * * * *
76 Oncologic history score 0.5 * * * * *
77 Immunologic history score 0.5 * * *
78 Musculoskeletal score 0.5 * * * *



Local-minimax loss from six models (actions) γa
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Figure: Comparison of optimality under minimax expected loss as a function of
KL radius, for the top 6 actions selected by simulated annealing search

• Note that the “optimal” action assuming a true model, πI(θ),
becomes the least optimal for KL radii greater than 0.1 (crossing
points approximately between 0.0125 and 0.075)



Case Study II – Screening design

• Public health policy is an area where the application of statistical
modeling can be used to optimally allocate resources

• Many countries operate a breast cancer screening policy (a hotly
debated and controversial issue) for healthy women over a threshold
age to detect asymptomatic tumors

• A primary issue is determining the optimal screening schedule (action),
consisting of a = (t0, δ),

I a starting time t0 (age of first screen), and,
I a frequency δ for subsequent screens

• Parmigiani (1993) proposed using a semi-Markov process consisting of
four states which generalizes to any chronic disease characterized by an
asymptomatic stage.



A B

D

C
tB ∼ f(t|µ, σ2) tC ∼ q(t|κ, ρ, tB)

tD ∼ h(t|α, β, tB , tC)tD ∼ h(t|α, β)

tD ∼ h(t|α, β, tB)

Figure: A, disease-free; B, the pre-clinical stage; C clinical; absorbing state D
(death)



• All individuals start in state A

• This is followed by a transition to either the clinical stage of the
disease or death

• Following Parmigiani (1993) , we model the transitions as,

tB ∼ f(t|µ, σ2) = LogNormal(µ, σ2)

tC ∼ q(t|κ, ρ) = LogLogistic(κ, ρ)

tD ∼ h(t|c, d) = Weibull(α, β)

• An individual is characterized by the triple t = (tB , tC , tD)

• The symptomatic stage of the disease is contracted only when
tD < tB + tC (assuming that all individuals will contract the disease if
they lived long enough)

• We use 10,000 samples of θi ∼ πI(θ) to represent the distributions



Choosing an optimal screening design

• The task is to select an optimal screening schedule a = (t0, δ)

• The loss function is defined as follows (a function of the times
t = (tB , tC , tD):

La(t0, δ) = r · na(t) + 1C

where na is the number of screening schedules an individual will
receive during their lifetime, until they die or enter into the
asymptomatic stage of the disease

1C is the indicator function, taking value 1 for the event that the
pre-clinical tumor is not detected by screening or occurs before t0, and
zero otherwise

• r trades off the cost of one screen against the cost incurred by the
onset of the clinical disease, following others we take r = 10−3



Model – πI(θ)
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Loss distributions for various schedules
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Figure: Loss distribution for 12 potential schedules following Ruggeri et al.
(2005)

• We considered 12 potential screening schedules

• The optimal schedule, assuming everything is true, minimising
expected loss under πI , is

â = (t0 = 40, δ = 0.75)



Local-minimax loss as KL radii changes
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action. Note for a KL radius greater than ≈ 5.5 schedule 1 is suboptimal.
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DP sampler and quantile of loss within KL ball

0.4

0.6

0.8

0.0 2.5 5.0 7.5
kl

A
ve

ra
ge

 E
xp

ec
te

d 
Lo

ss

Schedule

(Start=40years, Freq=9months)

(Start=40years, Freq=12months)

(Start=40years, Freq=15months)

(Start=40years, Freq=18months)

(Start=45years, Freq=9months)

(Start=45years, Freq=12months)

Figure: DP sampler: 10% quantile of expected loss as a function of KL
divergence.



Summary

• Checking robustness and sensitivity of answers to modelling
assumptions should be a key component of any data analysis

• In the Bayesian approach robustness can be explored through a class of
distributions Γ around the prior or posterior model

• We showed how using re-weighted MC samples generated from the
model, θi ∼ p(θ|x), we can explore robustness within a KL ball around
the approximating model

I Deterministic re-weighting of MC samples estimates the
local-minimax outcome within a ball of fixed radii from p(θ|x)

I Predictive tempering arises as robust local-minimax solution

I Stochastic re-weighting of MC samples using a Coupled Dirichlet
Process, provides samples from the space of all distributions
within some KL ball around p(θ|x)

• Moreover the KL is the only coherent divergence measure, and the
local-minimax leads to predictive tempering



Summary

• Of course, through time constraints there have been many areas we
were forced to omit or gloss over

I Did not have time to discuss diagnostics techniques using
graphical methods and summary statistics

I Merely skimmed the important areas of PAC-Bayesian and Gibbs
posteriors which you loss functions (rather than log-likelihoods) to
construct models

• See Watson & Holmes (2014) for further details and references



Conclusions

• Optimal actions and decisions are conditional on models

• If the models are approximations then so are the answers and decisions

• Their is a rise in the development and use of approximate probabilistic
models to address modern big-data applications

I merits a reappraisal of Bayesian robustness

• Statisticians should be sensitive to decision stability – “shake your
model”

Acknowledgements: Medical Research Council, Wellcome Trust, EPSRC
(www.i-like.org.uk)



Additional reasons for using Kullback-Leibler

• invariant to re-parameterisation

• interpretable as half the expected deviance

• information theoretic interpretation as number of bits of information to
recover πI from π∗

• equals the expected loss in using πI to approximate π∗ when
preferences are described by proper local scoring rules

• from the “robustness” properties of MLE we know that πI will
converge to the closest distribution in KL divergence to Nature’s true
π

• the solution turns out to be analytic and computable

• KL bounds L1 loss, so KL(π∗, πI) ≥ 1
2 ||π

∗ − πI ||21
• KL is the only coherent divergence measure
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