
Efficient Bayesian inference with

Hamiltonian Monte Carlo

Michael Betancourt
University of Warwick

Machine Learning Summer School 2014
April 29, 2014

M
od

el
 C

om
pl

ex
ity

Sample Size

Can big data support big models?

M
od

el
 C

om
pl

ex
ity

Sample Size

Can big data support big models?

Big data
in theory

M
od

el
 C

om
pl

ex
ity

Sample Size

Can big data support big models?

Big data
in practice

M
od

el
 C

om
pl

ex
ity

Sample Size

Can big data support big models?

Big data
in practice

M
od

el
 C

om
pl

ex
ity

Sample Size

Can big data support big models?

Big data
in practice

-5

 0

 5

 10

 15

 20

 0 500 1000 1500 2000

µ

Iteration

Markov Chain Monte Carlo
in Practice

Bayesian inference is a powerful tool
for asking germane statistical questions

Bayesian inference is a powerful tool
for asking germane statistical questions

⇡(✓|D) / ⇡(D|✓)⇡(✓)

Bayesian inference is a powerful tool
for asking germane statistical questions

✓)⇡(✓)⇡(✓|D) / ⇡(D|✓)⇡(✓)

⇡(✓|D) / ⇡(D|✓)⇡(✓)

Bayesian inference is a powerful tool
for asking germane statistical questions

✓)⇡(✓)/ ⇡(D|✓)

But what makes a good statistical question?

But what makes a good statistical question?

f(ˆ✓), ˆ✓ = argmax⇡(✓)

But what makes a good statistical question?

E[f(✓)] =
Z

d✓ ⇡(✓) f(✓)

f(ˆ✓), ˆ✓ = argmax⇡(✓)

Probability densities are a computational convenience --
our questions should not rely on them

Probability densities are a computational convenience --
our questions should not rely on them

⇡ : B(⌦) ! [0, 1]

Probability densities are a computational convenience --
our questions should not rely on them

✓ : ⌦ ! Rn

d⇡(✓) = d✓ ⇡(✓)

⇡ : B(⌦) ! [0, 1]

E[f(✓)] =
Z

d✓ ⇡(✓) f(✓)

Probability mass is fundamental, not density!

f(ˆ✓), ˆ✓ = argmax⇡(✓)

E[f(✓)] =
Z

d✓ ⇡(✓) f(✓)E[f(✓)] =
Z

d✓ ⇡(✓) f(✓)

Probability mass is fundamental, not density!

f(ˆ✓), ˆ✓ = argmax⇡(✓)f(ˆ✓), ˆ✓ = argmax⇡(✓)

r

And mass can be very far away from density

rr

And mass can be very far away from density

rrr

And mass can be very far away from density

 0 0.5 1 1.5 2
r

d = 1

And mass can be very far away from density

 0 0.5 1 1.5 2
r

d = 10

And mass can be very far away from density

 0 0.5 1 1.5 2
r

d = 100

And mass can be very far away from density

 0 0.5 1 1.5 2
r

d = 1000

And mass can be very far away from density

 0 0.5 1 1.5 2
r

d = 10000

And mass can be very far away from density

E[f(✓)] =
Z

d✓ f(✓)⇡(✓|D)

Well-posed queries can be answered
by integrating the posterior

E[f(✓)] =
Z

d✓ f(✓)⇡(✓|D)

⇡(✓2, . . . , ✓n|D) =

Z
d✓1 ⇡(✓|D)

Well-posed queries can be answered
by integrating the posterior

E[f(✓)] =
Z

d✓ f(✓)⇡(✓|D)

⇡(✓2, . . . , ✓n|D) =

Z
d✓1 ⇡(✓|D)

⇡(✓2, . . . , ✓n|✓1,D) =
⇡(✓|D)R
d✓1 ⇡(✓|D)

Well-posed queries can be answered
by integrating the posterior

Building a posterior is straightforward:
Bayesian inference is hard because integration is hard

E[f(✓)] =
Z

d✓ f(✓)⇡(✓|D)

The key to efficient integration
is Markov Chain Monte Carlo

Here the posterior is represented with a set of samples
from which expectations can be efficiently computed

p(✓|D) ! {✓1, . . . , ✓n}

Here the posterior is represented with a set of samples
from which expectations can be efficiently computed

p(✓|D) ! {✓1, . . . , ✓n}

E[f(✓)] ⇡ 1

N

NX

n=1

f(✓i)

We generate those samples with a Markov chain,
typically defined by its transition kernel

⇡0(✓) =

Z
d✓ T (✓, ✓0)⇡(✓0)

In practice, MCMC proceeds in three stages

In practice, MCMC proceeds in three stages

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

µ

Iteration

In practice, MCMC proceeds in three stages

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

µ

Iteration

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

µ

Iteration

In practice, MCMC proceeds in three stages

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

µ

Iteration

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

µ

Iteration

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

µ

Iteration

Warmup

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

µ

Iteration

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

µ

Iteration

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

µ

Iteration

A Markov chain will preserve its stationary distribution...

⇡(✓) =

Z
d✓ T (✓, ✓0)⇡(✓0)

But in order to reach the stationary distribution
we have to “filter” our initial distribution

⇡(✓) =

Z
d✓ T (✓, ✓0) . . .

Z
d✓000 T (✓000, ✓0000)⇡(✓0000)

But in order to reach the stationary distribution
we have to “filter” our initial distribution

But in order to reach the stationary distribution
we have to “filter” our initial distribution

But in order to reach the stationary distribution
we have to “filter” our initial distribution

But in order to reach the stationary distribution
we have to “filter” our initial distribution

But in order to reach the stationary distribution
we have to “filter” our initial distribution

In practice it’s easier to consider the state
of the Markov chain relative to the typical set

In practice it’s easier to consider the state
of the Markov chain relative to the typical set

In practice it’s easier to consider the state
of the Markov chain relative to the typical set

In high dimensions the typical set
is often vary far from any MAP

 0 0.5 1 1.5 2
r

d = 1000

How do we know that we’ve converged?
Visual diagnostics are appealing...

-5

 0

 5

 10

 15

 20

 0 500 1000 1500 2000

µ

Iteration

But they can be misleading!

-5

 0

 5

 10

 15

 20

 0 500 1000 1500 2000

µ

Iteration

The best strategy is to run multiple chains
from diffuse initializations and compare

-5

 0

 5

 10

 15

 20

 0 500 1000 1500 2000

µ

Iteration

R̂ =

r
N � 1

N
+

1

N

B

W

p ! p� ✏
@V

@q

q ! q + ✏M�1pq ! q + ✏M�1p

q ! q + ✏M�1p

We can also learn sampler parameters during
warmup, provided we’ve already converged

Sampling

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

µ

Iteration

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

µ

Iteration

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

µ

Iteration

Sometimes chains get “stuck”

-3

-2

-1

 0

 1

 2

 3

 0 200 400 600 800 1000
Iteration

Sometimes chains get “stuck”

-3

-2

-1

 0

 1

 2

 3

 0 200 400 600 800 1000
Iteration

-3

-2

-1

 0

 1

 2

 3

 0 200 400 600 800 1000
Iteration

Analysis

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

µ

Iteration

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

µ

Iteration

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

µ

Iteration

It’s time to calculate some expectations!

f̂ =
1

N

NX

n=1

f(✓i)

Under mild conditions, Monte Carlo expectations
are distributed around the true value

f̂ ⇠ N
�
E[f] ,MCSE2

�

The Monte Carlo Standard Error measures
the precision of the Monte Carlo estimate

MCSE2 =
Var(f)

ESS

The Effective Sample Size is roughly the number
of independent samples generated in the chain

ESS =
N

1 + 2
PN

n=1 ⇢n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

l

Lag

Careful inspection of Monte Carlo
estimates is always a good idea

Inference for Stan model: example_model	
1 chains: each with iter=(1000); warmup=(0); thin=(1); 1000 iterations saved.	
!
Warmup took (0.0081) seconds, 0.0081 seconds total	
Sampling took (0.012) seconds, 0.012 seconds total	
!
 Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat	
lp__ -0.53 3.3e-02 7.1e-01 -2.0 -0.25 -2.3e-03 460 36797 1.00	
accept_stat__ 0.85 6.7e-03 2.1e-01 0.36 0.95 1.0e+00 1000 80019 1.00	
stepsize__ 1.5 7.2e-15 5.1e-15 1.5 1.5 1.5e+00 0.50 40 1.00	
treedepth__ 0.48 1.8e-02 5.0e-01 0.00 0.00 1.0e+00 806 64458 1.00	
mu 3.9 5.0e-02 1.0e+00 2.2 3.9 5.6e+00 419 33557 1.0

You can use MCMC to
validate your model as well

⇡
⇣
D̃|D

⌘
=

Z
d✓ ⇡

⇣
D̃|✓

⌘
⇡
⇣
✓|D

⌘

You can use MCMC to
validate your model as well

⇡
⇣
D̃|D

⌘
=

Z
d✓ ⇡

⇣
D̃|✓

⌘
⇡
⇣
✓|D

⌘

D̃ ⇠ ⇡
⇣
D̃|✓

⌘
✓ ⇠ ⇡

⇣
✓|D

⌘

You can use MCMC to
validate your model as well

 0 0.5 1 1.5 2
D

You can use MCMC to
validate your model as well

 0 0.5 1 1.5 2
D

You can use MCMC to
validate your model as well

 0 0.5 1 1.5 2
D

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

µ

Iteration

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

µ

Iteration

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

µ

Iteration

An Introduction to
Hamiltonian Monte Carlo

Random Walk Metropolis generates
transitions with a “guided’’ diffusion

Explain Explain

T (✓, ✓0) = N
�
✓0|✓,�2

�
min

✓
1,

⇡(✓0)

⇡(✓)

◆

While the Gibbs sampler scans
through conditional transitions

Explain Explain

T (✓, ✓0) =
Y

i

⇡
�
✓0i|✓j\i

�

In order to understand the efficacy of these transitions
we have to consider the distribution of probability mass

In practice, MCMC performance is limited by
the complex distribution of posterior mass

Random walk Metropolis sampling explores only slowly

Random walk Metropolis sampling explores only slowly

Gibbs sampling doesn’t fare much better

Gibbs sampling doesn’t fare much better

The problem is that RWM
and Gibbs explore incoherently

The problem is that RWM
and Gibbs explore incoherently

The problem is that RWM
and Gibbs explore incoherently

The problem is that RWM
and Gibbs explore incoherently

The problem is that RWM
and Gibbs explore incoherently

How can we explore coherently?

How can we explore coherently?

Hamiltonian flow is a coherent,
measure-preserving map

q ! (p, q)

Hamiltonian flow is a coherent,
measure-preserving map

q ! (p, q)

H(p, q) ! e�H(p,q)dnp dnq

Which is exactly what we need for a Markov transition

T (q0, q) = ⇡(p) �((p0, q0)� �⌧ (p, q))

We just need to define
the Hamiltonian appropriately

H(p, q) = � log ⇡(p, q)

We just need to define
the Hamiltonian appropriately

H(p, q) = � log ⇡(p, q)

� log ⇡(p|q)⇡(q)

� log ⇡(p|q)� log ⇡(q)

We just need to define
the Hamiltonian appropriately

H(p, q) = � log ⇡(p, q)

� log ⇡(p|q)⇡(q)

� log ⇡(p|q)� log ⇡(q)� log ⇡(p|q)� log ⇡(q)

We just need to define
the Hamiltonian appropriately

T

H(p, q) = � log ⇡(p, q)

� log ⇡(p|q)⇡(q)

� log ⇡(p|q)� log ⇡(q)

We just need to define
the Hamiltonian appropriately

V

H(p, q) = � log ⇡(p, q)

� log ⇡(p|q)⇡(q)

� log ⇡(p|q)� log ⇡(q)

Quadratic kinetic energies with constant metrics
emulate dynamics on a Euclidean manifold

⇡(p|q) = N (0,M)

T =
1

2
pipj

�
M�1

�ij

The coherent flow the Markov chain along the
target distribution, avoiding random walk behavior

The coherent flow the Markov chain along the
target distribution, avoiding random walk behavior

The coherent flow the Markov chain along the
target distribution, avoiding random walk behavior

The coherent flow the Markov chain along the
target distribution, avoiding random walk behavior

Unfortunately, Euclidean HMC is
sensitive to large variations in curvature

As well as variations in the target density

�V = �T =
n

2

These weaknesses are particularly
evident in hierarchical models

x1 x2 xn�1 xn. . .

v

⇡(x, v) =
nY

i=1

⇡(xi|v)⇡(v)

These weaknesses are particularly
evident in hierarchical models

These weaknesses are particularly
evident in hierarchical models

These weaknesses are particularly
evident in hierarchical models

DV ⇡ 250

These weaknesses are particularly
evident in hierarchical models

DV ⇡ 250

Quadratic kinetic energies with dynamic metrics
emulate dynamics on a Riemannian manifold

⇡(p|q) = N (0,⌃(q))

T =

1

2

pipj
�
⌃

�1
(q)

�ij
+

1

2

log |⌃(q)|

The Riemannian HMC locally
standardizes the target distribution

The Riemannian HMC locally
standardizes the target distribution

And the log determinant admits
full exploration of the funnel

And the log determinant admits
full exploration of the funnel

Unfortunately, a naive implementation
of HMC requires significant user input

dp

dt
= �@V

@q

dq

dt
= +M�1p

p ! p� ✏
@V

@q

Unfortunately, a naive implementation
of HMC requires significant user input

q ! q + ✏M�1p

p ! p� ✏
@V

@q

Unfortunately, a naive implementation
of HMC requires significant user input

q ! q + ✏M�1p

⇡(accept) = min

✓
1,

⇡(�⌧ (p, q))

⇡(p, q)

◆

p ! p� ✏
@V

@q

q ! q + ✏M�1p

Unfortunately, a naive implementation
of HMC requires significant user input

⇡(accept) = min

✓
1,

⇡(�⌧ (p, q))

⇡(p, q)

◆

p ! p� ✏
@V

@q
p ! p� ✏

@V

@q

q ! q + ✏M�1p

Unfortunately, a naive implementation
of HMC requires significant user input

⇡(accept) = min

✓
1,

⇡(�⌧ (p, q))

⇡(p, q)

◆

p ! p� ✏
@V

@q
p ! p� ✏

@V

@q

q ! q + ✏M�1p

Unfortunately, a naive implementation
of HMC requires significant user input

⇡(accept) = min

✓
1,

⇡(�⌧ (p, q))

⇡(p, q)

◆

p ! p� ✏
@V

@q

q ! q + ✏M�1pq ! q + ✏M�1p

Unfortunately, a naive implementation
of HMC requires significant user input

⇡(accept) = min

✓
1,

⇡(�⌧ (p, q))

⇡(p, q)

◆

p ! p� ✏
@V

@q
q ! q + ✏M�1p

q ! q + ✏M�1pq ! q + ✏M�1p

Unfortunately, a naive implementation
of HMC requires significant user input

⇡(accept) = min

✓
1,

⇡(�⌧ (p, q))

⇡(p, q)

◆

p ! p� ✏
@V

@q

q ! q + ✏M�1p

Unfortunately, a naive implementation
of HMC requires significant user input

⇡(accept) = min

✓
1,

⇡(�⌧ (p, q))

⇡(p, q)

◆
⇡(accept) = min

✓
1,

⇡(�⌧ (p, q))

⇡(p, q)

◆

Stan

Hamiltonian Monte Carlo

Modeling
Language

Automatic
Differentiation Adaptation

Stan

Hamiltonian Monte Carlo

Modeling
Language

Automatic
Differentiation Adaptation

A strongly typed modeling language allows users to
specify complex models with minimal effort

Stan

Hamiltonian Monte Carlo

Modeling
Language

Automatic
Differentiation Adaptation

Automatic differentiation enables efficient,
exact computation of the necessary gradients

f(x,y) = x2 + y2

Automatic differentiation enables efficient,
exact computation of the necessary gradients

f(x,y) = x2 + y2

x y

+

* *

Stan

Hamiltonian Monte Carlo

Modeling
Language

Automatic
Differentiation Adaptation

Free parameters, such as the step size,
can be adapted to each target distribution

 0 0.2 0.4 0.6 0.8 1

Co
st

Average Acceptance Probability

Lower Bound

Upper Bound

We can also adapt the integration time
using the No-U-Turn Sampler

We can also adapt the integration time
using the No-U-Turn Sampler

We can also adapt the integration time
using the No-U-Turn Sampler

We can also adapt the integration time
using the No-U-Turn Sampler

The Stan user community is active and rapidly
growing, coming from such diverse fields as

Influenza Epidemiology
Political Science / International Relations
Demography / Sociology
Cardiovascular and Substance-Abuse
Epidemiology
Evolutionary Biology
Neuropsychopharmacology /
Psychophysiology
Fish Population Dynamics
Evolutionary Anthropology
Exoplanet Astrophysics

Stan

Hamiltonian Monte Carlo

Modeling
Language

Automatic
Differentiation Adaptation

Backups

Optimal numerical integration suggests using
the Hessian, but the Hessian isn’t positive-definite

⌃(q)ij = @i@jV (q)

Fisher-Rao is both impractical and ineffective

⌃(q)ij = ED [@i@jV (q|D)]

Fisher-Rao is both impractical and ineffective

⌃(q)ij = ED [@i@jV (q|D)]

()
@i@jV (q|D)

Fisher-Rao is both impractical and ineffective

⌃(q)ij = ED [@i@jV (q|D)]

()
ED [@i@jV (q|D)]

We can regularize without appealing to expectations

[exp(↵Hlj)� exp(�↵Hlj)]
�1

·Hkl·

⌃ij(q) = [exp(↵Hik) + exp(�↵Hik)]

The “SoftAbs” metric serves as a
differentiable absolute value of the Hessian

λ
’

λ

1 / α

⇡(accept) = min

✓
1,

⇡(�⌧ (p, q))

⇡(p, q)

◆

Free parameters, such as the step size,
can be adapted to each target distribution

⇡(accept) = min
⇣
1, eH(p,q)�H(�⌧(p,q))

⌘

Free parameters, such as the step size,
can be adapted to each target distribution

Free parameters, such as the step size,
can be adapted to each target distribution

Free parameters, such as the step size,
can be adapted to each target distribution

Free parameters, such as the step size,
can be adapted to each target distribution

 0 0.2 0.4 0.6 0.8 1

Co
st

Average Acceptance Probability

Lower Bound

Upper Bound

