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Building a posterior is straightforward:  
Bayesian inference is hard because integration is hard    
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Z

d✓ f(✓)⇡(✓|D)



The key to efficient integration  
is Markov Chain Monte Carlo    
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We generate those samples with a Markov chain,  
typically defined by its transition kernel

⇡0(✓) =

Z
d✓ T (✓, ✓0)⇡(✓0)
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A Markov chain will preserve its stationary distribution...
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In high dimensions the typical set  
is often vary far from any MAP
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How do we know that we’ve converged? 
Visual diagnostics are appealing...
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The best strategy is to run multiple chains  
from diffuse initializations and compare
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p ! p� ✏
@V

@q

q ! q + ✏M�1pq ! q + ✏M�1p

q ! q + ✏M�1p

We can also learn sampler parameters during  
warmup, provided we’ve already converged



Sampling
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Sometimes chains get “stuck”
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It’s time to calculate some expectations!

f̂ =
1

N

NX

n=1

f(✓i)



Under mild conditions, Monte Carlo expectations  
are distributed around the true value

f̂ ⇠ N
�
E[f ] ,MCSE2

�



The Monte Carlo Standard Error measures 
the precision of  the Monte Carlo estimate

MCSE2 =
Var(f)

ESS



The Effective Sample Size is roughly the number 
of  independent samples generated in the chain

ESS =
N

1 + 2
PN

n=1 ⇢n
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Careful inspection of  Monte Carlo  
estimates is always a good idea

Inference for Stan model: example_model	
1 chains: each with iter=(1000); warmup=(0); thin=(1); 1000 iterations saved.	
!
Warmup took (0.0081) seconds, 0.0081 seconds total	
Sampling took (0.012) seconds, 0.012 seconds total	
!
                 Mean     MCSE   StdDev    5%    50%       95%  N_Eff  N_Eff/s  R_hat	
lp__            -0.53  3.3e-02  7.1e-01  -2.0  -0.25  -2.3e-03    460    36797   1.00	
accept_stat__    0.85  6.7e-03  2.1e-01  0.36   0.95   1.0e+00   1000    80019   1.00	
stepsize__        1.5  7.2e-15  5.1e-15   1.5    1.5   1.5e+00   0.50       40   1.00	
treedepth__      0.48  1.8e-02  5.0e-01  0.00   0.00   1.0e+00    806    64458   1.00	
mu                3.9  5.0e-02  1.0e+00   2.2    3.9   5.6e+00    419    33557    1.0



You can use MCMC to  
validate your model as well
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An Introduction to 
Hamiltonian Monte Carlo



Random Walk Metropolis generates  
transitions with a “guided’’ diffusion

Explain Explain 

T (✓, ✓0) = N
�
✓0|✓,�2

�
min

✓
1,

⇡(✓0)

⇡(✓)

◆



While the Gibbs sampler scans  
through conditional transitions

Explain Explain 

T (✓, ✓0) =
Y

i

⇡
�
✓0i|✓j\i

�



In order to understand the efficacy of  these transitions 
we have to consider the distribution of  probability mass



In practice, MCMC performance is limited by  
the complex distribution of  posterior mass
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Hamiltonian flow is a coherent,  
measure-preserving map
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Which is exactly what we need for a Markov transition

T (q0, q) = ⇡(p) �((p0, q0)� �⌧ (p, q))
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the Hamiltonian appropriately

V
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Quadratic kinetic energies with constant metrics 
emulate dynamics on a Euclidean manifold

⇡(p|q) = N (0,M)

T =
1

2
pipj

�
M�1

�ij
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Unfortunately, Euclidean HMC is  
sensitive to large variations in curvature



As well as variations in the target density

�V = �T =
n

2



These weaknesses are particularly  
evident in hierarchical models

x1 x2 xn�1 xn. . .

v

⇡(x, v) =
nY

i=1

⇡(xi|v)⇡(v)
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Quadratic kinetic energies with dynamic metrics 
emulate dynamics on a Riemannian manifold

⇡(p|q) = N (0,⌃(q))

T =

1

2

pipj
�
⌃

�1
(q)

�ij
+

1

2

log |⌃(q)|



The Riemannian HMC locally  
standardizes the target distribution
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And the log determinant admits  
full exploration of  the funnel
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Unfortunately, a naive implementation  
of  HMC requires significant user input

dp

dt
= �@V

@q

dq

dt
= +M�1p
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A strongly typed modeling language allows users to 
specify complex models with minimal effort 
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Free parameters, such as the step size,  
can be adapted to each target distribution
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The Stan user community is active and rapidly  
growing, coming from such diverse fields as

Influenza Epidemiology 
Political Science / International Relations 
Demography / Sociology 
Cardiovascular and Substance-Abuse 
Epidemiology 
Evolutionary Biology 
Neuropsychopharmacology / 
Psychophysiology 
Fish Population Dynamics 
Evolutionary Anthropology 
Exoplanet Astrophysics



Stan

Hamiltonian Monte Carlo

Modeling  
Language

Automatic 
Differentiation Adaptation



Backups



Optimal numerical integration suggests using  
the Hessian, but the Hessian isn’t positive-definite

⌃(q)ij = @i@jV (q)
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We can regularize without appealing to expectations

[exp(↵Hlj)� exp(�↵Hlj)]
�1

·Hkl·

⌃ij(q) = [exp(↵Hik) + exp(�↵Hik)]



The “SoftAbs” metric serves as a  
differentiable absolute value of  the Hessian

λ
’

λ

1 / α
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